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models a.k.a. generative flows

• Challenges: 

• An optimization-friendly metric for comparing high-
dimensional distributions with one of those supported on 
low-dimensional manifolds

• Choosing among flows that push-forwards a prior 
distribution to a target distribution

• Key Question: How do we ensure that a learning 
problem for continuous-time generative flows to be 
well-posed and robust with respect to data 
submanifolds and time-discretization?
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Concept of generative models



Generative Flow Formulation

Learning problem as a transport between distributions 𝜌0 and 𝜌𝑇 

• Fokker-Planck equation (eventually formulated as a Mean Field Game)

inf
𝑣,𝜌

 𝐽(𝑣, 𝜌; 𝜋)

𝑠. 𝑡. 𝜌𝑡 + ∇ ⋅ 𝑣𝜌 =
𝜎2

2
Δ𝜌, 𝜌0 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛

𝑣: ℝ𝑑 × 0, ∞ → ℝ𝑑,   𝜌: 𝒫 ℝ𝑑 × 0, ∞ →

𝒫 ℝ𝑑
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• Fokker-Planck equation (eventually formulated as a Mean Field Game)

inf
𝑣,𝜌

 𝐽(𝑣, 𝜌; 𝜋)

𝑠. 𝑡. 𝜌𝑡 + ∇ ⋅ 𝑣𝜌 =
𝜎2

2
Δ𝜌, 𝜌0 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛

• ODE/SDE

inf
𝑣,𝜌

 𝐽(𝑣, 𝜌; 𝜋)

𝑠. 𝑡.  𝑋𝑡 = 𝑣 𝑋𝑡 , 𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡 , 𝑋0~𝜌0

We consider deterministic flows, i.e. 𝜎 = 0.

𝑣: ℝ𝑑 × 0, ∞ → ℝ𝑑,   𝜌: 𝒫 ℝ𝑑 × 0, ∞ →

𝒫 ℝ𝑑



f-Divergences and Their Challenges

Formal definition of 𝑓-divergences
𝑓: 0, ∞ → ℝ convex, 𝑓 1 = 0, lower semi-continuous, super-linear

𝐷𝑓 𝑃||𝑄 ≔ 𝐸𝑄 𝑓
𝑑𝑃

𝑑𝑄

• ex) KL divergence 𝐷𝐾𝐿 𝑃||𝑄  for 𝑓 𝑥 = 𝑥 log 𝑥, 𝛼 −divergence 𝐷𝛼 𝑃||𝑄  for 𝑓 𝑥 =
𝑥𝛼−1

𝛼 𝛼−1
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where 𝑓∗ is the Legendre transform of 𝑓.
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• Challenge: Mutually singular distributions 𝑃 and 𝑄 make 𝑓-divergences ill-posed.



Infimal convolution of 𝐷𝑓 and 𝑊1 provides Wasserstein-1 proximal regularized 

𝒇-divergence [Birrell, Dupuis, Katsoulakis, Pantazis, Rey-Bellet (2022, JMLR)]

𝐷𝑓
𝐿(𝑃||𝑄) = inf

R∈𝒫1 ℝ𝑑
𝐷𝑓 𝑅||𝑄 + 𝐿 ⋅ 𝑊1 𝑃, 𝑅

               = sup
𝜙∈𝐿𝑖𝑝𝐿 ℝ𝑑

𝐸𝑃 𝜙 − 𝐸𝑄 𝑓∗ 𝜙

• Variational derivative 
𝛿𝐷𝑓

𝐿 𝑃 𝑄

𝛿𝑃
  exists for all 𝑷 ∈ 𝓟𝟏 ℝ𝒅  and 𝑸; It is the optimizer 𝜙∗

𝛿𝐷𝑓
𝐿 𝑃 𝑄

𝛿𝑃
= 𝜙∗

• 𝐷𝑓
𝐿(𝑃| 𝑄 ≤ min(𝐷𝑓 𝑃||𝑄 , 𝐿 ⋅ 𝑊1 𝑃, 𝑄 )

• Purpose: comparison of mutually singular distributions

Wasserstein-1 Proximal Regularization of f-
divergence
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𝐿 𝑃 𝑄

𝛿𝑃
= 𝜙∗

• 𝐷𝑓
𝐿(𝑃| 𝑄 ≤ min(𝐷𝑓 𝑃||𝑄 , 𝐿 ⋅ 𝑊1 𝑃, 𝑄 )

• Purpose: comparison of mutually singular distributions

Wasserstein-1 Proximal Regularization of f-
divergence

Wasserstein gradient flow learning Sierpinski carpet (cyan) from 3D gaussian prior (magenta)
[Gu, Birmpa, Pantazis, Rey-Bellet, Katsoulakis (2024, SIAMODS)]



Use Dynamic (Bernamou-Brenier) formulation of Wasserstein-2 divergence

𝑊2
2 𝑃, 𝑄 = inf

𝑣,𝜌
න

0

1

න
ℝ𝑑

𝑣(𝑥, 𝑡) 2 𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡  𝑠. 𝑡.  𝜌𝑡 + ∇ ⋅ 𝑣𝜌 = 0, 𝜌0 = 𝑃, 𝜌1 = 𝑄

Infimal convolution of ℱ and 𝑊2
2 provides Wasserstein-2 proximal regularized 

terminal cost

          inf
𝜌,𝑣

ℱ 𝜌𝑇 +
𝜆

2𝑇
⋅ 𝑊2

2 𝜌0, 𝜌𝑇  𝑠. 𝑡.  𝜌𝑡 + ∇ ⋅ 𝑣𝜌 = 0,  𝜌0 = 𝑃

= inf
𝜌,𝑣

ℱ 𝜌𝑇 + 𝜆 ⋅ න
0

𝑇

න
ℝ𝑑

1

2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡  𝑠. 𝑡.  𝜌𝑡 + ∇ ⋅ 𝑣𝜌 = 0, 𝜌0 = 𝑃

• Interpretation: Adds kinetic energy penalization to flow paths

• Unlike Wasserstein-1, it focus on path regularity

Wasserstein-2 Proximal Regularization of 
terminal cost
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Left: Wasserstein-2 
proximal regularized flow. 
Right: generic flow.



Formulating Generative Flows Using Mean-
Field Game (MFG) Theory

Mean Field Game

inf
𝑣,𝜌

ℱ 𝜌 ⋅, 𝑇 + න
0

𝑇

ℐ 𝜌(⋅, 𝑡 )𝑑𝑡 + න
0

𝑇

න
ℝ𝑑

𝐿 𝑥, 𝑣(𝑥, 𝑡 )𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

𝑠. 𝑡. 𝜌𝑡 + ∇ ⋅ 𝑣𝜌 =
𝜎2

2
Δ𝜌, 𝜌0 = 𝜌(⋅, 0)

Optimal solution satisfies the following coupled PDE system
• Backward Hamilton-Jacobi-Bellman (HJB) equation 

−𝜕𝑡𝑈 + 𝐻 𝑥, ∇𝑈 −
𝜎2

2
Δ𝑈 =

𝛿ℐ 𝜌

𝛿𝜌
𝑥 , 𝑈 𝑥, 𝑇 =

𝛿ℱ 𝜌𝑇

𝛿𝜌𝑇
𝑥

• Forward Fokker-Planck equation

𝜌𝑡 − ∇ ⋅ ∇𝑝𝐻 𝑥, ∇𝑈 𝜌 =
𝜎2

2
Δ𝜌, 𝜌0 = 𝜌 ⋅, 0

where the Hamiltonian 𝐻 𝑥, 𝑝 = sup
𝑣

{−𝑝𝑇𝑣 − 𝐿(𝑥, 𝑣)}.
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0

0

Hamilton-Jacobi (HJ) equation



Combining Wasserstein-1 and Wasserstein-2 
Proximals

• 𝑊1 ⊕ 𝑊2-flow [Gu, Katsoulakis, Rey-Bellet, Zhang (2024)]
Combine 𝑫𝒇

𝑳 = 𝑾𝟏 proximal of 𝑫𝒇 and 𝑾𝟐 proximal of 𝑫𝒇
𝑳

                                 inf
𝜌𝑇

𝐷𝑓
𝐿 𝜌𝑇| 𝜋 +

𝜆

2𝑇
⋅ 𝑊2

2 𝜌0, 𝜌𝑇

Terminal cost  ℱ 𝜌 ⋅, 𝑇 Running cost  0׬

𝑇
ℝ𝑑׬ 𝐿 𝑥, 𝑣(𝑥, 𝑡 )𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡
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                                 inf
𝜌𝑇

𝐷𝑓
𝐿 𝜌𝑇| 𝜋 +

𝜆

2𝑇
⋅ 𝑊2

2 𝜌0, 𝜌𝑇

= inf
𝜌𝑇

 inf
𝜎

𝐷𝑓 𝜎| 𝜋 + 𝐿 ⋅ 𝑊1 𝜌𝑇, 𝜎 +
𝜆

2𝑇
⋅ 𝑊2

2 𝜌0, 𝜌𝑇

= inf
𝑣,𝜌

sup
𝜙∈𝐿𝑖𝑝 𝐿

𝐸𝜌 ⋅,𝑇 𝜙 − 𝐸𝜋 𝑓∗ 𝜙 + 𝜆 ⋅ න
0

𝑇

න
ℝ𝑑

1

2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

s.t. 
𝑑𝑥

𝑑𝑡
= 𝑣 𝑥 𝑡 , 𝑡 , 𝑥 0 ∼ 𝜌0, (𝑥) 𝑡 ∈ 0, 𝑇

Terminal cost  ℱ 𝜌 ⋅, 𝑇

Dual formulation of 𝐷𝑓
𝐿

Composition of 
proximal operators

Running cost  0׬

𝑇
ℝ𝑑׬ 𝐿 𝑥, 𝑣(𝑥, 𝑡 )𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

Dynamical formulation of 𝑊2
2



Theorem: inf
𝑣,𝜌

sup
𝜙∈𝐿𝑖𝑝𝐿

𝐸𝜌 ⋅,𝑇 𝜙 − 𝐸𝜋 𝑓∗ 𝜙 + 𝜆 ⋅ ׬
0

𝑇
׬

ℝ𝑑

1

2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

                                                                   s.t.
𝑑𝑥

𝑑𝑡
= 𝑣 𝑥 𝑡 , 𝑡 , 𝑥 0 ∼ 𝜌0, 𝑡 ∈ 0, 𝑇

has the following optimality conditions: 

• 𝑫𝒇
𝑳 = 𝑾𝟏 proximal of 𝑫𝒇 provides a well-defined terminal condition of the HJ equation 

            𝑈 𝑥, 𝑇 =
𝛿𝐷𝑓

𝐿 𝜌𝑇,𝜋

𝛿𝜌𝑇
𝑥 = 𝜙∗(𝑥) 

• 𝑾𝟐 proximal of 𝑫𝒇
𝑳 provides a well-defined the HJ dynamics 

−𝜕𝑡𝑈 +
1

2𝜆
∇𝑈 2 = 0

which leads to an optimal velocity field 𝑣 = −
1

𝜆
∇𝑈 and continuity equation

𝜕𝑡𝜌 − ∇ ⋅ 𝜌
∇𝑈

𝜆
= 0

• 𝑾𝟐 proximal of 𝑫𝒇
𝑳 provides a linear optimal trajectory 

𝑥 𝑡 = 𝑥 𝑇 +
𝑇 − 𝑡

𝜆
∇𝜙∗ 𝑥 𝑇
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Theorem: If the backward-forward PDE system 
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the torus Ω, then they are unique and the solution to the optimization problem

inf
𝑣,𝜌

sup
𝜙∈𝐿𝑖𝑝𝐿

𝐸𝜌 ⋅,𝑇 𝜙 − 𝐸𝜋 𝑓∗ 𝜙 + 𝜆 ⋅ න
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𝑇

න
ℝ𝑑
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2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

                                                               s.t.
𝑑𝑥

𝑑𝑡
= 𝑣 𝑥 𝑡 , 𝑡 , 𝑥 0 ∼ 𝜌0, 𝑡 ∈ 0, 𝑇

is also unique.

Uniqueness of optimal 𝑊1 ⊕ 𝑊2-flow 
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                                                               s.t.
𝑑𝑥

𝑑𝑡
= 𝑣 𝑥 𝑡 , 𝑡 , 𝑥 0 ∼ 𝜌0, 𝑡 ∈ 0, 𝑇

is also unique.

Uniqueness of optimal 𝑊1 ⊕ 𝑊2-flow 

Uniqueness of optimal solution implies well-posedness of optimization problem.



Adversarial Training of Generative Flows

• Unlike normalizing flows, we bypass the need to invert the flow by 

adversarial training of the flow
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0

𝑇

න
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2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡



Adversarial Training of Generative Flows

• Unlike normalizing flows, we bypass the need to invert the flow by 

adversarial training of the flow

𝐢𝐧𝐟
𝑣,𝜌

𝐬𝐮𝐩
𝜙∈𝐿𝑖𝑝 𝐿

𝐸𝜌 ⋅,𝑇 𝜙 − 𝐸𝜋 𝑓∗ 𝜙 + 𝜆 ⋅ න
0

𝑇

න
ℝ𝑑

1

2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

• Impact: Our formulation resolves the ill-posedness issue of 

generative flows when learning distributions supported on low-

dimensional manifolds.



Numerical experiment: Impact of 
Wasserstein-1 proximal  regularization

𝑊1 ⊕ 𝑊2-
flow

𝑊2-flow

2D 7D 12D



Numerical experiment: Impact of 
Wasserstein-1 proximal  regularization

Unlike other generative flows, our proposed 𝑊1 ⊕ 𝑊2-flow learns distributions supported 
on low-dimensional manifolds without autoencoders or specialized architectures.

𝑊1 ⊕ 𝑊2-
flow

𝑊2-flow

2D 7D 12D

Normalizing 
flow

Adversarial 
flow but no 

uniquely 
defined 

variational 
derivative
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in generative flows.
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Numerical experiment: Impact of Wasserstein-2 
proximal  regularization

Δ𝑡 = 1

Δ𝑡 =
1

64
➤ 𝑊1 ⊕ 𝑊2-flow implies discretization invariance 

in generative flows.

⟹ Try larger step size Δ𝑡 to train the flow faster.

Total kinetic energy ➤



Summary and Future Work

Future work:

• Incorporate diffusion term 
and interaction cost to the 
model

• Efficient parametrization of 
the flow using the PDEs for 
the optimal solution

Learning objective 

inf
𝑣,𝜌

sup
𝜙∈𝐿𝑖𝑝𝐿

𝐸𝜌 ⋅,𝑇 𝜙 − 𝐸𝜋 𝑓∗ 𝜙 + 𝜆 ⋅ න
0

𝑇

න
ℝ𝑑

1

2
𝑣 𝑥, 𝑡 2𝜌 𝑥, 𝑡 𝑑𝑥𝑑𝑡

                                                          s.t.
𝑑𝑥

𝑑𝑡
= 𝑣 𝑥 𝑡 , 𝑡 , 𝑥 0 ∼ 𝜌0, 𝑡 ∈ 0, 𝑇

Optimality conditions

𝜕𝑡𝑈 −
1

𝜆
𝛻𝑈 2 = 0,  𝑈 ⋅, 𝑇 = 𝜙∗

𝜕𝑡𝜌 − ∇ ⋅ 𝜌
∇𝑈

𝜆
= 0,  𝜌 ⋅, 0 = 𝜌0

Linear trajectories

Wasserstein-1
Proximal 

regularization

Wasserstein-2
Proximal 

regularization

Uniqueness of 
optimal solution
 ⟹ Well-posed 

learning problem
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