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1. PINNs for Dynamical systems and
Implementation

« Damped harmonic oscillator:
d*u  du

e Given finite train data
{x;, u(xi)}izl,---,N

* Learning problem!




Neural Network vs. PINN

Neural Network PINN
. 2 _ 2
» min T (uyy (x;; 0) — u(x) » min . T (uyy (x5 0) — u(x))” +
1 2
« Learn from data 3 (RuNN(x]-;ZB))

d“u du
where R = m-—— +pu_- + ku.

Good interpolation

if trained well e Learn from data + differential
equation (Physics rule)

Extrapolation?

https://benmoseley.blog/blog/ : Illustration with Python codes using Pytorch



https://benmoseley.blog/blog/

2. Python library for PINNs: DeepXDE

* A specialized library for PINNs

- Key features:

« Various applicable problems:
« Forward problem
* Inverse problem
* Integro-differential equations
« Complex domain

 Residual-based Adaptive
Refinement

DeepXDE: A Deep Learning
Library for Solving Differential
Equations*
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Abstract. Deep learning has achieved remarkable success in diverse applications; however, its use in

solving partial differential equations (PDEs) has emerged only recently. Here, we present
an overview of physics-informed neural networks (PINNs), which embed a PDE into the
loss of the neural network using automatic differentiation. The PINN algorithm is simple,
and it can be applied to different types of PDEs, including integro-differential equations,
fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view,
PINNs solve inverse problems as easily as forward problems. We propose a new residual-
based adaptive refinement (RAR) method to improve the training efficiency of PINNs.
For pedagogical reasons, we compare the PINN algorithm to a standard finite element
method. We also present a Python library for PINNs, DeepXDE, which is designed to
serve both as an educational tool to be used in the classroom as well as a research tool
for solving problems in computational science and engineering. Specifically, DeepXDE can
solve forward problems given initial and boundary conditions, as well as inverse problems
given some extra measurements. DeepXDE supports complex-geometry domains based on
the technique of constructive solid geometry and enables the user code to be compact,
resembling closely the mathematical formulation. We introduce the usage of DeepXDE
and its customizability, and we also demonstrate the capability of PINNs and the user-
friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes
to the more rapid development of the emerging scientific machine learning field.

Key words. education software, DeepXDE, differential equations, deep learning, physics-informed

neural networks, scientific machine learning



Installation and Dependencies

» Require one of these python libraries:
* TensorFlow 1.x: TensorFlow>=2.2.0 (Default)
» TensorFlow 2.x: TensorFlow>=2.2.0 and TensorFlow Probability
 PyTorch: PyTorch

* Install using pip
$ pip install deepxde
« Other dependencies
Matplotlib

*NumPy
escikit-learn
scikit-optimize

*SciPy



https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/probability
https://pytorch.org/
https://matplotlib.org/
http://www.numpy.org/
https://scikit-learn.org/
https://scikit-optimize.github.io/
https://www.scipy.org/

Workflow

geometry  Tensorflow maps
Differential Boundary/initial
Geometry ‘ equations J conditions Neural net
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— g s data.PDE or
Training data > >
g data.TimePDE e
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Model.train(...,
callbacks=...)

Model.predict(...)

Model.compile(...)

— | Generate Train data using numerical ODE
solvers such as solve_ivp or ode_int

Let's take a look with a specific example

| def ode_system(x, v):|

r=vy[:, 0:1]
p =yl 1:2]
dr_t = dde.grad. jacobian(y, x, i=0)
do_t = dde.grad. jacobian(y, x, i=1)

return [

drt =1 /7ub*xrb*x(20xubx*r —0.04=ub=*r=ub=*p),
do_t =1 /7ub*rbx(0.02*r*ub=*p=xub-106=*p=*ub),

def boundary(_, on_initial)
return on_initial

=|dde . geometry. TimeDomain(0.0, 1.0)]

geom
dde.data.PDE(geom, ode_system, |[], 3000, 2,

data

num_test=3000)

layer_size = [1] + [B4] = B + [2]
activation = "tanh"
initializer = "Glorot normal"

net =| de .maps .FNN( laver _size, activation
mode| =\ dde . Modelidata, net

mode| .compi le("adam”, [r=0,001
losshistory, train_state =|model .train{epochs=50000) |

initializer)|

mode| . compi le("L-BFGS")
losshistory, train_state = model.train()

100)

|

t = np.linspace(0, 1,
t = t.reshape(100, 1)

sol _pred :lmodel.gredictstgl

x_pred = sol_pred[:, 0:1]
v_pred = sol_pred[:, 1:2]




How to specify DE: example

e Inverse Lorenz model

def Lorenz_system(x, v):
"""Lorenz system.
dvl/dx = 10 *

dv2/dx = w1 * (28 — v3) — v2

dv3/ dx 1 2

vl, v2, ¥3 =y[:, 0011, v[:, 1221, v[:, 2!]
dvl_x = dde.grad. jacobian(y, x, i=0)
dv?_x = dde.grad. jacobian(y, x, i=1)
dv3_x = dde.grad.jacobian(y, x, i=2)
return [

dvl_x — C1 = (y2 — v1),

dv?_x — w1 = (C2 — v3) + v2,

dyd_x — vl *= y2 + (3 * y3,



DOC u m e ntatio n https://deepxde.readthedocs.io/en/latest/index.htm]

compile(optimizer, Ir=None, loss='"MSE', metrics=None, decay=None, loss_weights=None,
external_trainable_variables=None)  [source]

Configures the model for training.

Parameters: « optimizer - String. Name of optimizer.

Ir - ATensor or a floating point value. The learning rate. For L-BFGS, use

dde.optimizers.set_LBFGS_options to set the hyperparameters.

loss - If the same loss is used for all errors, then loss is a String (name of
objective function) or objective function. If different errors use different
losses, then loss is a list whose size is equal to the number of errors.

metrics - List of metrics to be evaluated by the model during training.

decay -
Tuple. Name and parameters of decay to the initial learning rate. One of the

following options:

o inverse time decay: (“inverse time”, decay_steps, decay_rate)

o cosine decay: (“cosine”, decay_steps, alpha)

loss_weights - A list specifying scalar coefficients (Python floats) to weight

the loss contributions. The loss value that will be minimized by the model will
then be the weighted sum of all individual losses, weighted by the

loss_weights coefficients.

external_trainable_variables - A trainable tf.variable object or a list of
trainable tf.variable objects. The unknown parameters in the physics
systems that need to be recovered. If the backend is tensorflow.compat.vl,
external_trainable_variables is ignored, and all trainable tf.variable objects

are automatically collected.


https://deepxde.readthedocs.io/en/latest/index.html

