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Lipschitz-regularized Gradient Flows

• Lipschitz-regularized f-Divergence [1]
A flexible family of divergences in purpose of comparing two mutually
singular probability measures P, Q ∈ P(Rd) is defined as an infimal
convolution of f -divergences (e.g KL, α, Shannon-Jensen) and
1-Wasserstein distance (Γ-Integral Probability Metric (IPM) where Γ is the
1-Lipschitz functions; denoted as Γ1)

DΓL
f (P∥Q) = inf

γ∈P(Rd)
Df(γ∥Q) + L · W Γ1(P, γ). (1)

The dual variational representation of (1) is

DΓL
f (P∥Q) = sup

ϕ∈ΓL

{
EP [ϕ] − inf

ν∈R
{ν + EQ[f ⋆(ϕ − ν)]}

}
(2)

where f ⋆ is the Legendre transform of f .

• Lipschitz-regularized Gradient Flows [2]
Wasserstein gradient flows whose gradient dynamics are given by
Lipschitz-regularized f -Divergences

∂tPt = div
Pt∇

δDΓL
f (Pt∥Q)
δPt

 , P0 = P. (3)

The first variation exists for any P, Q with P ∈ P1(Rd)
δDΓL

f (P ∥Q)
δP

= ϕL,∗ = argmax
ϕ∈ΓL

{
EP [ϕ] − inf

ν∈R
(ν + EQ[f ⋆(ϕ − ν)])

}
.

(4)
The Lagrangian formulation of the PDE (3) yields an ODE

d

dt
Yt = vL

t (Yt) = −∇ϕL,∗
t (Yt) , Y0 ∼ P. (5)

Generative Particles Algorithm (GPA)

• (X (i))N
i=1 from the “target” Q and (Y (i)

0 )M
i=1 from the “source” P are given.

• Learn discriminator ϕ which is parameterized by a neural network
using the variational representation (2) and samples (X (i))N

i=1, (Y (i)
n )M

i=1

ϕL,∗
n = argmax

ϕ∈ΓNN
L


∑M

i=1 ϕ(Y (i)
n )

M
− inf

ν∈R

ν +
∑N

i=1 f ⋆(ϕ(X (i)) − ν)
N


 (6)

• Explicitly impose the Lipschitz continuity of ϕ by spectral
normalization [3]

• Obtain ∇ϕ(Yt) by automatic differentiation and solve the ODE (5) with
an explicit scheme

Y
(i)

n+1 = Y (i)
n − ∆t∇ϕL,∗

n (Y (i)
n ) , Y

(i)
0 ∼ P i = 1, ..., M (7)

• Iterate for nT steps (T = nT∆t); kinetic energy 1
M

∑M
i=1 |∇ϕL,∗

n (Y (i)
n )|2 → 0.Lipschitz-regularized Particle Descent

X ∋ x ∼ Q

X ∋ x ∼ P
(Source)

(Target)

(I − Δt∇ϕ*)
Transporter X ∋ x ∼ P = (I − Δt∇ϕ*)#P

Discriminator


max
ϕ∈ΓL

[EP[ϕ] − EQ[ f*(ϕ)]]

ϕ*

(b)

Figure: An iteration of GPA to transport the probability measure P

Generating Samples from Scarce Data Using GPA for Data Augmentation

Two approaches to ensure generalization ability of GPA
1 Imbalanced sample sizes M ≫ N

2 From training particles to generated particles

(a) Fixed target samples
with sample size
N = 200

(b) M = 600
transported particles
from (fKL, Γ5)-GPA

(c) 600 simultaneously
transported particles
from (fKL, Γ5)-GPA

Figure: GPA for image generation given scarce target data (MNIST). (b)
M = 600 initial particles from Unif ([0, 1]784) were transported toward the
target in the setting of M ≫ N , which promotes sample diversity. (c) A new
set of 600 initial particles from Unif ([0, 1]784) were transported through the
previously learned vector fields.

• GPA for data augmentation

Figure: Evaluating GPA-Based Data Augmentation for Training WGAN on
MNIST. WGAN trained with 200 original data (left), WGAN trained with 1400
original data (center), WGAN trained with 200 original data and 1200
GPA-augmented data (right). WGAN was not able to learn from 200 original
samples from the MNIST data base WGAN trained with 1400 original data can
now generate samples but in a moderate quality. We use the generated samples
as in (b) and (c) in the previous figure for augmenting data to train a WGAN
with a mixture of 1400 real, transported and generated samples in total. Such a
GAN generated samples of similar quality compared to the GAN trained with
1400 original samples.

Numerical stability and L

The Lipschitz bound L on the discriminator space implies a pointwise bound
|∇ϕL,∗

n (Y
(i)

n )| ≤ L. Hence the Lipschitz regularization imposes a speed limit
L on the particles, ensuring the stability of the algorithm for suitable choices
of L. Indeed, from a numerical analysis point of view, (7) is a particle-based
explicit scheme for the PDE (3). In this context, the Courant, Friedrichs,
and Lewy (CFL) condition for stability of discrete schemes for transport
PDEs becomes

sup
x

|∇ϕL,∗
t (x)| ∆t

∆x
≤ 1. (8)

We emphasize the importance of Lipschitz regularization in stabilizing dynam-
ics when generating heavy-tailed distributions.

Figure: Learning a heavy-tailed distribution f (x) ∝ |x|−3 using GPA where
Lipschitz-regularized with L = 1 (left), Unregularized (right).

Learning low-dimensional data manifold

While Df(P∥Q) < ∞ and the existence of the first variation for f -divergences
only if P ≪ Q, DΓL

f (P∥Q) does not require absolute continuity and
applies to any P with a finite first moment, regardless of the choice of the target
Q [4]. Therefore, DΓL

f can be a suitable divergence for learning distributions
with low-dimensional data manifolds.

(a) Sierpinski carpet of level 4: Target distribution in 2D

(b) GPA trajectories at 4 different time points
Figure: Learning 2D data manifold embedded in 3D using (fKL, Γ1)-GPA. (b)
4,096 random samples are drawn from the 3D isotropic Gaussian source P and
then transported (magenta). 4,096 target samples (cyan).

Latent Space Generative Particles

We leverage latent space formulations from recent generative flow papers [5]
to achieve scalability in dimensions beyond the hundreds .
• Idea: A pre-trained autoencoder first projects the high-dimensional

space to a lower dimensional latent space and then a generative model is
trained in the latent space. Subsequently, the decoder maps the data
generated in the latent space back to the original high-dimensional space.

• Autoencoder performance guarantees
Given an autoencoder E : Rd → Rd′ with aD-Lipschitz continuous
D : Rd′ → Rd, which satisfies perfect reconstruction D#E#QY = QY,

DΓL
f (D#P Z∥D#E#QY) ≤ DaDΓL

f (P Z∥E#QY). (9)

Figure: Gene expression dataset in R54,675 integration by GPA transportation.
Two gene expression datasets without any transformation (left). Dataset
integration using (fKL, Γ1)-GPA in a latent space R50 obtained by PCA (right).
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