Lorenz Equations for Atmospheric Convection Modeling

Hyemin Gu
hgu@umass.edu

May 12, 2021

Hyemin Gu MATH646 Sp21 Project Presentation May 12, 2021 1/21



Outline of the study

@ Lorenz [1] introduced a dynamical system, the Lorenz equations in
1963 which describes the Earth's atmospheric convection.

@ Using governing equations in 2D hydrodynamics, the steps of Lorenz
are followed to derive the Lorenz equations from an abstract climate
model.

@ Then, Lorenz equations are analyzed by its equilibrium solutions and
illustrated by individual examples.

@ In the final discussion, application to the atmospheric convection
modeling is stated and a different approach to handle the problem is
proposed.

Hyemin Gu MATH646 Sp21 Project Presentation May 12, 2021 2/21



The setting from Lorenz

Rayleigh-Bernard flow

@ The Earth’s atmosphere is assumed an incompressible fluid situated
between two horizontal planes in a uniform height. The fluid is heated
from below and is cooled at the top, which results in a convective
flow.

@ It is considered a 2D flow, since the regular cell-like convection
pattern can be captured in a 2D domain.

EEEE]

Figure: Heat conduction in an incompressible fluid between horizontal planes
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Basic notations

@ x and y : the horizontal and vertical directions, respectively

@ y = 0 at the lower boundary and y = 7 at the upper boundary
o v =(vy,Vy) : the velocity field

e T(x,y,t) : the temperature at the position (x,y) at time t

@ The temperature at the lower boundary is Tg > 0, and the
temperature at the upper boundary is 0

T(y=0=To>0, T(y=m)=0 (1)
@ q : the heat flux from the convection
q=Tv—kVT, (2)

where k > 0 is the thermal conductivity
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Constitutive equations for the temperature T

(Incompressible flow)

_ O Oy

(The continuity equation)
oT
g V.q=0 4
5 T V-a (4)
= The heat equation
-
aat_:v-VT+nVT (5)

= Define deviation of temperature § = T — T* where T* is the
solution of (5). 6 satisfies the PDE

00 To

az—v-VG—k?vy—}—mVH (6)
and the boundary conditions

Oy =0)=0,0(y =7) =0, (7)
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Constitutive equations for the velocity field v

(Equation of motion)

gt(pV)-i-v'(PVV)_pg_v'T:O (8)

where T refers to the Cauchy stress tensor
(Incompressible flow) (3)
=

9,
a(pv)—i—V-(pvv)—pg—i—Vp—V‘S:O. (9)

= Define stream function i so that A = (; the vorticity. ( satisfies
the PDE
a¢

00

where ¢ is a thermal expansion coefficient and the boundary conditions for

1 are
P(y=0)=0, ¢(y=m)=0 (11)
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Constitutive equations

For any scalar function f : (x,y) — f(x,y),

vV = v+ vt =, +f, = (12)

A system of PDEs for 0 and Ay

DY 2 29 0y, Ay)

ot A e T Tty .
0 _ gy To08_ 0)
ot m Ox  I(x,y)

Substitute ¢ = At from (10).
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Dynamical system

Interpretation of u(x, t) in the sense of dynamical systems

u is a function of t, u: t — u(t), and u(x, t) is identified with the value of
u(t) at x,
u:t—u(t); u(t): x— u(t)(x) = u(x,t). (14)

@ Time is the "primary” variable and space is the "secondary” variable.
@ u(t) is a function of x, which belongs to a function space X which is
infinite dimensional in general.

@ X should meet the requirements specified from the original PDEs and
boundary conditions.

Changes from the previous setting

o d
© 9t 7 ar

° % — operations in the function space X

o the PDE to a dynamical system in X
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Absolute climate model

Let
u:<19p> st u(t), tel (15)

where ¢ and 6 are stream function and the deviation of the temperature,
respectively. The original PDE (13) can be rewritten for u as below.

the abstract ODE for

|

Considering u : | — X, the abstract ODE for u is
D
9O _ pu s N(w) (16)
dt
where
(¥, A1)
A¢> <VA2¢ 4 > (— s >
Du = ( , Au= 8% = sy |- (A7)
: 20+ 25 g3
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Dimension reduction

The solutions of the linearized system

d(Du)
dt

o= (1) = (i) ()

= Au (18)

are of the form

where
Yan 1 (X, ¥) = Yan(x, y) = sin(ax) sin(ny), (20)
Oan: (x,¥) = 0an(x,y) = cos(ax) sin(ny),
for some a>0and n=1,2,---. Then, £ and 7 satisfy a system of ODEs
ac
5__1/(32_{_”2)5_" 2+ >
(21)
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Dimension reduction

We only consider n = 1 which is the most dominant term and look for
solution in the subspace spanned by the coordinate vector u, 1 keeping a
free. The nonlinear component in the system (16) induces

N(uaz1) = ( % ) 27 <Si”(2)’)> ’ 2
X7y

and so, include it as a third coordinate function. An approximate solution
of (16) is given as

_ 7/) _ €(t)¢a,1 _ 0
o= () = Ciewen) =20 (o) )
And do this process one more time to get a projection on a
three-dimensional state space of £, 1, and A.
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Dimension reduction

The nonlinear system (16) reduces to a system of ODEs for £, 1, and A,

. 5 ac
{=-v(@+1){+ 2517

= 20— w(d + 1)y - A, (24)

1
&= —4r)\+ Eafn

the Lorenz equations

By reparametrization of variable, we get the Lorenz equations

X =—0ox+ oy,
y=px—y—xz (25)
z=—Pz+ xy.

v
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Equilibrium solutions

Lorenz equations can be analyzed by their equilibrium solutions which are
either equilibrium points or periodic orbits. The critical points of the
linearized model are

e (0,0,0) for p > 0, and additionally,

o (i = (i\/ﬁ(ﬂ— 1),i\/ﬂ(p— 1),p—1) for p > 1.
[llustrate the solution behavior under

o the fixed parameters o = 10, and 3 = §,

° py = gfgﬁ = 2.4737 as a critical point for p > 1 when analyzing Cy

e four distinct initial conditions are chosen arbitrarily to have same
distance(= 0.1) from the critical point

In the figures, the points for ICs are marked as *, the origin is marked as *,
and for p > 1, C4 are marked as *.
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Initial conditions * near the origin (p = 0.1,1)

@ For p = 0.1 < 1, the origin becomes an attractor and is stable.

p=0.1 p=1

Figure: Solution behavior for initial conditions near the origin
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Initial conditions * near the origin (p =

@ When p > 1, the origin is a saddle point.
@ For p =10 > 1, the solutions converge to C.. The origin is unstable.

@ For p =100 >> 1, the solutions are periodic orbits along C., and the
origin is still unstable.
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Figure: Solution behavior for initial conditions near the origin
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Initial conditions * near C, (p =1.1,2.3)

* C_ case is symmetric.
@ For1 < p=1.1,2.3 < py, C4 becomes an attractor and is stable.

p=11 14 p=23

18
T T T T T 1
178 18 182 184 18 188 19 192 194

Figure: Solution behavior for initial conditions near C
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Initial conditions * near C, (p = 10,10

* C_ case is symmetric.
@ For p =10 > py, C; gets unstable.

@ For p =100 >> 1, the solutions form periodic orbits along C., and
C, is still unstable.

100 40

Figure: Solution behavior for initial conditions near C,
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Initial conditions * far from equilibrium points

IC at (1,1,1), p=0.1,1.

@ For p = 0.1 < 1, the solution converges to the origin.

[}
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Initial conditions * far from equilibrium points

IC at (1,1,1), p = 10, 100.
@ For p =10 > 1, the solution converges to C,.
@ For p =100 >> 1, the solution is a periodic orbit along Ci and does
not converge.

p=10 =100

Figure: Solution behavior for initial conditions at (1,1,1)
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Discussion

@ In the sense of climate modeling, equilibrium points can be
interpreted as a climate state which does not change over multiples of
the typical time scale. As for periodic orbits, it can be interpreted as a
substantial evidence for time-periodic patterns in the Earth's climate.

@ The sensitive dependence to initial condition as well as the choice of
parameters manipulate the Earth's atmospheric convection does have
the chaotic behavior.

@ The current model is a simplified one which is obtained by reducing
the dimension of an infinite dimensional function space X truncated
by a few dominant terms.

@ Instead, we may consider RKHS framework to find an optimal
function f which is still in an infinite dimensional space, but easily
achievable by a PSD kernel corresponding to the inner product in that
space.
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