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Outline of the study

Lorenz [1] introduced a dynamical system, the Lorenz equations in
1963 which describes the Earth’s atmospheric convection.

Using governing equations in 2D hydrodynamics, the steps of Lorenz
are followed to derive the Lorenz equations from an abstract climate
model.

Then, Lorenz equations are analyzed by its equilibrium solutions and
illustrated by individual examples.

In the final discussion, application to the atmospheric convection
modeling is stated and a different approach to handle the problem is
proposed.
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The setting from Lorenz

Rayleigh-Bernard flow

The Earth’s atmosphere is assumed an incompressible fluid situated
between two horizontal planes in a uniform height. The fluid is heated
from below and is cooled at the top, which results in a convective
flow.

It is considered a 2D flow, since the regular cell-like convection
pattern can be captured in a 2D domain.

Figure: Heat conduction in an incompressible fluid between horizontal planes
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Basic notations

x and y : the horizontal and vertical directions, respectively

y = 0 at the lower boundary and y = π at the upper boundary

v = (vx , vy ) : the velocity field

T (x , y , t) : the temperature at the position (x , y) at time t

The temperature at the lower boundary is T0 > 0, and the
temperature at the upper boundary is 0

T (y = 0) = T0 > 0, T (y = π) = 0 (1)

q : the heat flux from the convection

q = Tv − κ∇T , (2)

where κ > 0 is the thermal conductivity
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Constitutive equations for the temperature T

(Incompressible flow)

∇ · v =
∂vx
∂x

+
∂vy
∂y

= 0 (3)

(The continuity equation)

∂T

∂t
+∇ · q = 0 (4)

⇒ The heat equation

∂T

∂t
= −v · ∇T + κ∇T (5)

⇒ Define deviation of temperature θ = T − T ∗ where T ∗ is the
solution of (5). θ satisfies the PDE

∂θ

∂t
= −v · ∇θ +

T0

π
vy + κ∇θ (6)

and the boundary conditions

θ(y = 0) = 0, θ(y = π) = 0. (7)
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Constitutive equations for the velocity field v

(Equation of motion)

∂

∂t
(ρv) +∇ · (ρvv)− ρg −∇ · T = 0 (8)

where T refers to the Cauchy stress tensor
(Incompressible flow) (3)
⇒

∂

∂t
(ρv) +∇ · (ρvv)− ρg +∇p −∇ · S = 0. (9)

⇒ Define stream function ψ so that ∆ψ = ζ; the vorticity. ζ satisfies
the PDE

∂ζ

∂t
= −v · ∇ζ + c

∂θ

∂x
+ ν∆ζ. (10)

where c is a thermal expansion coefficient and the boundary conditions for
ψ are

ψ(y = 0) = 0, ψ(y = π) = 0 (11)
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Constitutive equations

For any scalar function f : (x , y) 7→ f (x , y),

v · ∇f = vx fx + vy fy = −ψy fx + ψx fy =
∂(ψ, f )

∂(x , y)
. (12)

A system of PDEs for θ and ∆ψ

∂∆ψ

∂t
= ν∆2ψ + c

∂θ

∂x
− ∂(ψ,∆ψ)

∂(x , y)

∂θ

∂t
= κ∆θ +

T0

π

∂ψ

∂x
− ∂(ψ, θ)

∂(x , y)

(13)

Substitute ζ = ∆ψ from (10).
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Dynamical system

Interpretation of u(x , t) in the sense of dynamical systems

u is a function of t, u : t 7→ u(t), and u(x , t) is identified with the value of
u(t) at x ,

u : t 7→ u(t); u(t) : x 7→ u(t)(x) = u(x , t). (14)

Time is the ”primary” variable and space is the ”secondary” variable.

u(t) is a function of x , which belongs to a function space X which is
infinite dimensional in general.

X should meet the requirements specified from the original PDEs and
boundary conditions.

Changes from the previous setting
∂
∂t →

d
dt

∂
∂x → operations in the function space X

the PDE to a dynamical system in X
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Absolute climate model

Let

u =

(
ψ
θ

)
: t 7→ u(t), t ∈ I (15)

where ψ and θ are stream function and the deviation of the temperature,
respectively. The original PDE (13) can be rewritten for u as below.

the abstract ODE for u

Considering u : I → X , the abstract ODE for u is

d(Du)

dt
= Au + N(u) (16)

where

Du =

(
∆ψ
θ

)
, Au =

(
ν∆2ψ + c ∂θ∂x
κ∆θ + T0

π
∂ψ
∂x

)
, N(u) =

(
−∂(ψ,∆ψ)

∂(x ,y)

−∂(ψ,θ)
∂(x ,y)

)
. (17)
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Dimension reduction

The solutions of the linearized system

d(Du)

dt
= Au (18)

are of the form

u =

(
ψ
θ

)
=

(
ξ(t)ψa,n

η(t)θa,n

)
, (19)

where

ψa,n : (x , y) 7→ ψa,n(x , y) = sin(ax) sin(ny),

θa,n : (x , y) 7→ θa,n(x , y) = cos(ax) sin(ny),
(20)

for some a > 0 and n = 1, 2, · · · . Then, ξ and η satisfy a system of ODEs

ξ̇ = −ν(a2 + n2)ξ +
ac

a2 + n2
η,

η̇ =
aT0

π
ξ − κ(a2 + n2)η.

(21)
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Dimension reduction

We only consider n = 1 which is the most dominant term and look for
solution in the subspace spanned by the coordinate vector ua,1 keeping a
free. The nonlinear component in the system (16) induces

N(ua,1) =

(
∂(ψa,1,∆ψa,1)

∂(x ,y)
∂(ψa,1,θa,1)
∂(x ,y)

)
=

1

2
a

(
0

sin(2y)

)
, (22)

and so, include it as a third coordinate function. An approximate solution
of (16) is given as

u =

(
ψ
θ

)
=

(
ξ(t)ψa,1

η(t)θa,1

)
− λ(t)

(
0

sin(2y)

)
. (23)

And do this process one more time to get a projection on a
three-dimensional state space of ξ, η, and λ.
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Dimension reduction

The nonlinear system (16) reduces to a system of ODEs for ξ, η, and λ,

ξ̇ = −ν(a2 + 1)ξ +
ac

a2 + 1
η,

η̇ =
aT0

π
ξ − κ(a2 + 1)η − aξλ,

ξ̇ = −4κλ+
1

2
aξη

(24)

the Lorenz equations

By reparametrization of variable, we get the Lorenz equations

ẋ = −σx + σy ,

ẏ = ρx − y − xz ,

ż = −βz + xy .

(25)
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Equilibrium solutions

Lorenz equations can be analyzed by their equilibrium solutions which are
either equilibrium points or periodic orbits. The critical points of the
linearized model are

(0, 0, 0) for ρ > 0, and additionally,

C± = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1) for ρ > 1.

Illustrate the solution behavior under

the fixed parameters σ = 10, and β = 8
3 ,

ρH = σ+β+3
σ−β−1 = 2.4737 as a critical point for ρ > 1 when analyzing C±

four distinct initial conditions are chosen arbitrarily to have same
distance(= 0.1) from the critical point

In the figures, the points for ICs are marked as *, the origin is marked as *,
and for ρ > 1, C± are marked as *.
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Initial conditions * near the origin (ρ = 0.1, 1)

For ρ = 0.1 < 1, the origin becomes an attractor and is stable.

Figure: Solution behavior for initial conditions near the origin
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Initial conditions * near the origin (ρ = 10, 100)

When ρ ≥ 1, the origin is a saddle point.

For ρ = 10 > 1, the solutions converge to C±. The origin is unstable.

For ρ = 100 >> 1, the solutions are periodic orbits along C±, and the
origin is still unstable.

Figure: Solution behavior for initial conditions near the origin

Hyemin Gu MATH646 Sp21 Project Presentation May 12, 2021 15 / 21



Initial conditions * near C+ (ρ = 1.1, 2.3)

* C− case is symmetric.

For 1 < ρ = 1.1, 2.3 < ρH , C+ becomes an attractor and is stable.

Figure: Solution behavior for initial conditions near C+
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Initial conditions * near C+ (ρ = 10, 100)

* C− case is symmetric.

For ρ = 10 > ρH , C+ gets unstable.

For ρ = 100 >> 1, the solutions form periodic orbits along C±, and
C+ is still unstable.

Figure: Solution behavior for initial conditions near C+
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Initial conditions * far from equilibrium points

IC at (1, 1, 1), ρ = 0.1, 1.

For ρ = 0.1 < 1, the solution converges to the origin.

Figure: Solution behavior for initial conditions at (1, 1, 1)

Hyemin Gu MATH646 Sp21 Project Presentation May 12, 2021 18 / 21



Initial conditions * far from equilibrium points

IC at (1, 1, 1), ρ = 10, 100.

For ρ = 10 > 1, the solution converges to C+.

For ρ = 100 >> 1, the solution is a periodic orbit along C± and does
not converge.

Figure: Solution behavior for initial conditions at (1, 1, 1)
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Discussion

In the sense of climate modeling, equilibrium points can be
interpreted as a climate state which does not change over multiples of
the typical time scale. As for periodic orbits, it can be interpreted as a
substantial evidence for time-periodic patterns in the Earth’s climate.

The sensitive dependence to initial condition as well as the choice of
parameters manipulate the Earth’s atmospheric convection does have
the chaotic behavior.

The current model is a simplified one which is obtained by reducing
the dimension of an infinite dimensional function space X truncated
by a few dominant terms.

Instead, we may consider RKHS framework to find an optimal
function f which is still in an infinite dimensional space, but easily
achievable by a PSD kernel corresponding to the inner product in that
space.
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