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Abstract

Support Vector Machine (SVM) provides a linear classifier for binary classification problems.
Complex decision boundaries in the input feature space are handled by nonlinear kernels to the
SVM. Theories in Reproducing Kernel Hilbert Spaces (RKHS) state that, given a kernel K and a set
of M given data {x;,v:}2,, a SVM classifier function can be written as f(z) = ao + Zfil a;K(x, ;)
for some coeflicients a;s. Also, applying conformal transforms to a positive definite kernel produces
another positive definite kernel which are in more complexity. Hence, in case that well-known
kernels fail given the current training data, a new kernel can be tried by optimizing the coefficients
of a conformal kernel in the way to maximize the ratio ” (Between-class error)/(Within-class error)”
of the training data. Here, data-dependent kernel SVM is applied to an application of classifying
tumor /tumor-free organs from gene expression data and compared its classification performance with
other well-known kernels.
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1 Problem statement

Consider a binary classification problem which is stated as below.

Let X be an input space and Y = {#1} be an output space for two classes. Given paired data
{(xs,yi) }i=1,...~ C X x Y, build a classifier T : X — Y. It is considered that T separates the input
space X into several regions providing decision boundaries that separate the inputs.

Depending on the structure of inputs, decision boundaries could be linear or nonlinear.
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Approaches to find the decision boundary induce optimization problems. Support vector machine is
one of them.

2 Mathematical Preliminaries

2.1 Support Vector Machines

The formulation and notations are following [2].

2.1.1 Formulation of the optimization problem

Let us first consider the case that a hyperplane {z : f(x) = 278 + By = 0} where ||3]| = 1 clearly
separates the classes. One idea to build such a hyperplane is to maximize the margin M between points
and the plane. Since the classes are separable, we can find a function f such that y; f(z;) > 0 Vi. This
is called a Support vector machine (SVM) and can be witten as

max M (1)
B,Bo;lIBlI=1

subject to y;(zX B+ Bo) > M, i=1,--- ,N.
The assumption that ||3]] = 1 can be relaxed by setting M = 1/||8]|, so the problem can be reformu-
lated as

min 2

min ] @

subject to y;(zXB + By) > 1, i = 1,---,N. This is a convex optimization problem with quadratic
criterion.

Now assume that the classes overlap in the input space. Define the slack variable £ = (£1,&2,- - ,&nN)

where & > 0, Zf\; & < constant to indicate the overlaps. Retaining the convexity of the problem we

can formulate a similar problem.
min || 8 3
Bh 18Il (3)

3P0
subject to y;(zXB+ Bo) > 1-&, i =1,--- ,N,& > O,ZZN:l & < constant. This is referred to the
standard support vector classifier. Note that misclassification occurs if §; > 1.
2.1.2 Lagrangian method and its solution

Using Lagrangian multipliers, the problem with slack variables can be rewritten as a quadratic
programming

N
D I
il C i 4
g}gQIIBII +CY ¢ (4)

i=1

MATH697FA Sp21 Project Paper



subject to y; (2l B+ Bo) >1—&, i=1,---,N,& > 0 where C is a parameter.
Lagrangian primal function is

1 N N N
Lp=glBI° +CY & = ailyi(al B+ Bo) — (1= &) = D witi 5)
=1 =1 i=1

where «;, u; > 0. ming g, ¢, Lp can be obtained when
N
B=> aiyizi, (6)
i=1

N

0= a @
i=1

Q= C - i, (8)

Vi. Therefore, we can get Lagrangian dual function by plugging them in the primal function Lp.

N N

N
Lp= Z a; — % Z Z G Yy oL T 9)
=1

i=14'=1

subject to 0 < a; < C and 0 = Zf\il ;y;- Additional constraints

ailyi(z] B+ Bo) — (1 —&)] =0, (10)
& =0, (11)
yi(a] B+ Bo) —(1—&) >0 (12)

for i = 1,--- , N should be included to apply KKT condition. Then, by KKT condition, the optimal
point for max,, Lp is necessarily the solution to the primal and dual problem.
According to @, the solution for 8 has the form

N
B = Zdzyzmz (13)
=1

with nonzero @; only for those observations ¢ for which the constraint in are exactly met (due to
(10)). Those observations are called the support vectors. For these support vectors, él = 0 and due to
and , 0 < @; < C and otherwise, ¢; = 0. Such margins (0 < @; < C and & = 0) are used to
determine f3,.

Given the solutions 3 and o, the decision function T can be found as T' = sign[f(z)].

2.1.3 Kernel SVM

So far, the SVM classifier finds linear boundaries in the input space X. Generally, linear boundaris
in the enlarged space achieve better separation, and translate to nonlinear boundaries in the original
space. Transform the input features as h(x;) = (hi(x;), ho(2;), -+ , har(z;)) € RM and produce nonlinear
function f(z) = h(z)TB + By and the classifier ' = sign[f(z)]. In this way, the enlarged input space
could be very large, so that it is computationally prohibitive. Recall that the Lagrange dual function @

has the form
N N

N
Lp = Zai - %Z Z iy < h(wq), h(zi) > (14)
=1

i=14=1

and from (), the solution function f(z) has the form

f@) = h(@)" 8+ Bo (15)
N
= Zalyl < h(x),h(x;) > +Bo (16)
i=1
3
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Therefore, we require only the knowledge of the kernel function K (x,z’) =< h(x), h(z') > instead of the
transformation h(z). Particular choices of h give us cheaper calculations of the kernel K (x,z’) such as

dth-degree polynomial: K (z,z') = (1+ < z,2’ >)¢, (17)
radial basis: K (z,z") = exp(y||z — 2'||?), (18)
sigmoid: K (z,2') = tanh(k; < x, 2" > +ka). (19)

2.2 Reproducing kernel Hilbert spaces

We are going to optimize above problems over certain function spaces. Hilbert spaces defined by repro-
ducing kernels (RKHS) have computationally attractive properties. Further details are in [4].

2.2.1 Definition of RKHS

Note Hilbert space H is an inner product space with inner product < -,- > which is complete. (i.e.
Every Cauchy sequence converges in H.) Examples are R%, Lo, 5, etc.

A linear functional on a Hilbert space H is a mapping L : H — R that is linear. And a linear
functional L is bounded if for all f € H, there exists M < oo such that |L(f)| < M| f|jm. The Riesz
representation theorem characterizes bounded linear functionals in a Hilbert space.

Riesz representation theorem Let L be a bounded linear functional on a Hilbert space. Then there
exists a unique g € H such that L(f) =< f,g >g for all f € H. (g is referred to the representer of the
functional L.)

According to Riesz representation theorem, a bounded linear functionals in a Hilbert space is an inner
product of a representer. In RKHS, we will see that the kernel acts as the representer for the evaluation
functional.

A symmetric bivirate function I : X x X — R is positive semidefinite if for all n € N and elements
{zi}iz=1,... n C X, the n x n matrix with elements KC;; = K(x;, x;) is positive semidefinite. By defining a
mapping ® : X — Y where both X and Y are Hilbert spaces, K can be expressed as a Gram matrix of
the form K(z, z) =< ®(z), ®(z) >v.

Any PSD kernel K can be used to construct a particular and unique Hilbert space of functions. And
this Hilbert space is unique and has the kernel reproducing property

< f,K(,z) >u= f(z) Vf € H. (20)

It allows to define a feature map = — K(-,z) € H from the kernel K. The reproducing property
ensures that
<K(,2),K(-, 2) >u= K(z,2) Vz,z € X. (21)

To define a Hilbert space with the reproducing property , begin with a set H of functions of
the form f(-) = 377, a;K(-,x;) for some integer n > 1, set of points {x;}7_; C X and weight vector

a € R™. Tt can be shown that H is a vector space with inner product of ) = Z?:l a,;K(-,x;) and
g(-) = Zzlzl Bk (-, ) defined as

<fog =YY aibuk(ag, yp)- (22)

j=1k=1

Moreover, this inner product satisfy the reproducing property ,
< LK) >p= ) 0K (s, 0) = f(@) (23)
j=1

where the kernel acts as the representer for the evaluation functional.
Finally, given any Hilbert space H in which the evaluation functionals are bounded, there is a unique
PSD kernel K that satisfies the reproducing property .
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2.2.2 Mercer’s theorem

Mercer’s theorem states the decomposition of a kernel to PSD kernels.
For a nonnegative measure P over a compact metric space X, consider the function class L?(X;P) or
simply L?(X) with the norm

112 = /X (@) PdP(z). (24)

Given a symmetric PSD kernel K : X x X — R which is continuous and [ K*(z,z)dP(z)dP(z) < oo,
define a linear operator T on L?(X) via

Te(f) () = / K(z,2)f(2)dP(2). (25)

X

Apply Cauchy-Schwartz inequality

(DI = [ ( | K@ 2s@iee >) 0 (2) (26)
< 1ax, /X XK?(w)dP(x)dP(z) (27)

to show that Ti is a bounded operator on L?(X). Operators of these type are known as Hilbert-Schmidt
operators.

Mercer’s theorem Suppose that X is compact, the kernel K is continuous and PSD, and satisfies
the Hilbert-Schmidt condition . Then there exists a sequence of eigenfunctions (¢;)32; that form an
orthonormal basis of L?(X;P), and its corresponding nonnegative eigenvalues (115)32, such that

Tic(¢5) = pjpy for j =1,2,---. (28)

Moreover, the kernel function has the expansion
2) = pidi(x)d;(2), (29)
j=1

where the convergence of the series holds absolutely and uniformly.

Mercer’s theorem induces an idea on RKHS to provide an embedding of the function domain X into
a subset of the sequence space ¢?(N). Using the eigenfunctions and eigenvalues from Mercer’s theorem,
define a mapping ® : X — ¢2(N) via

z = O(z) = (Vo1 (), Ve da(), iz (), - --). (30)

By construction,

[ f1() 172 ) = Zug K(z,z) < oo, (31)

and -
< 01(@),61(2) hgy= D 1565(@)5(2) = Kl 2). (32)

j=1

Corollary of Mercer’s theorem Consider a kernel satisfying the conditions of Mercer’s theorem
with associated eigenfunctions (¢;)52, and nonnegative eigenvalues (4£;)32;. It induces the RKHS

62
H:={f= Zm] MHCW(N)ZM <oy, (33)
J
along with inner product
i <[, ¢ ><g.6; >
2%

< f,g>m= < 0, (34)
j=1

where < -,- > denotes the inner product in L?(X;P).
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2.2.3 operations on RKHS
Now we will see a number of operations on RKHS that allow us to build new spaces which are referred
in [3].

First, define two Hilbert spaces from given Hilbert spaces H; and Hy of functions defined on domains
X7 and Xo, respectively. Consider two spaces

e Addition:
Hl +H2 = {f1+f2|f]€HJ7j:172} (35)

with norm [|£|lse == ming—f, 4 1, 1, em. oem {1 I, + /18,
e Tensor product:
n
Hy @ Hy := {h: X1 x Xo > Rlh = fig; for some n €N, f; € Hy,g; € Hp Vj € N} (36)
j=1
where its inner product is defined for h = 377, f;g; and h = >t figi as < h,h >p=
dim1 ey < i fr >m0< gy Gk >H,-
Now, the operations below defines a kernel from given kernels.

e sums and limits of kernels
The set of kernels forms a convex cone, closed under pointwise convergence.

— If Ky and Iy are kernels, and aq, as > 0, then a1 K1 + 2K is a kernel. Moreover, the kernel

’C = K:1 + ICQ (37)
reproduces the RKHS in (35).
— If K1, Ko, - - - are kernels, and K(z, 2) := lim, o K (2, 2) exists for all z, z, then K is a kernel.

e pointwise products of kernels
If K1, Ko are kernels, then /1 KCo, defined by

(K1Ko)(z, 2) = K1(x, 2)Ka(x, 2) (38)
is a kernel.
— A special case is conformal transforms,
Kz, 2) = f(2)K(z, 2) f(2) (39)

obtained by multiplying a kernel K with a rank-one kernel X' = f(x) f(z) where f is a positive
function. Since

cos x ) = f@)K(z, 2)f(2)
(@), 2(2) = et s (40)
K(z,z) — cos (£ (B(x), 8(2))), (41)

K(z,x2)\/K(z,z)
this transform does not affect the angles in the feature spaces.

e Dot product kernels
A differentiable function of the dot product K(z, z) = K(< x, z >) has to satisfy

K(t) >0,K'(t) > 0,K'(t) +tK"(t) > 0 (42)

for any t > 0, in order to be a PSD kernel. A function K(z, z) = K(< z,z >) defined on an infinite
dimensional Hilbert space, with a power series expansion

K(t) = i ant™, (43)
n=0

is a PSD kernel iff for all n, we have a,, > 0. A slightly weaker condition applies for finite
dimensional spaces.

MATH697FA Sp21 Project Paper



e tensor product kernels
If K1, Ko are kernels defined respectively on X7 x X; and X5 X X5, then their tensor product,

(K1 @ Ka) (1,22, 21, 22) = K1(21,21) (22, 22), (44)

is a kernel on (X7 X X3) x (X1 x X5) where x1,21 € Xy and x2,20 € X5. Moreover, the kernel
K1 ® Ko reproduces the RKHS in .

e direct sums
If K1, Ko are kernels defined respectively on X7 x X7 and X5 X X5, then their direct sum,

(K1 @ Ka) (21,22, 21, 22) = K1 (21, 21) + K(22, 22), (45)

is a kernel on (X7 X X5) x (X7 x X5) where x1,21 € X1 and x2, 20 € Xo.

2.3 SVM classifiers in RKHS

Suppose that the transformed feature h arises from the eigen-expansion of a positive definite kernel K,
= Z Gm () Pm ()0, (46)
i=1
and hu, () = V/0m¢dm (). Then this kernel reproduces a RKHS Hy where functions in the Hy are of the

form -
z) = Z cigi(x) (47)

with the constraint that

2

i
P =3 <o (48)
i=1 '
Letting a penalty functional J(f) = || f(x)||f, , consider the regularized optimization problems which are
equivalent
N
min L(y;, f(x; 49
pin | st s+ 10, (9

Z

o0 )\ o0 2
' L(y; vy AN G A1
 min ; (yu;cjdy( 2;(5 (41)

N 00
. A T
< min lzl(l —yi(ao + Z::lcm(bm(:z:i)))Jr t5a Ko (42)
where A to be determined empirically.
Wahba (1990)[1] showed that the solution f is finite-dimensional and has the form

N
flx)=ap+ Z ;K (x, z;), (50)

i=1

Note that the RKHS Hy provides useful properties such as the reproducing property , the
evaluation of f € Hg at the point z; is f(z;) =< K(-,z;),f >. Also, due to the property that
< K(-24),K(-, xj) >me= K(x;,x;), the penalty functional can be written as

N N
J(f) = ZZaiale(xi,xj). (51)

i=1 j=1
3 Methods

3.1 Data dependent kernel

Xiong[5] provided a formulation and algorithm to obtain a data dependent kernel.
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3.1.1 Formulation of the kernel

Let {(z;,y:)}X, be a set of N observations where the input z; € R? and the output y; = £1, Vi =

1,---,N. It is called the training dataset. Our goal is to fit a kernel SVM classifier to this training

dataset. The kernel K is determined with respect to given data and is called the data dependent kernel.
The data dependent kernel K is formulated by the conformal transform as

Kz, z) = q(x)Ko(z, 2)q(2) (52)

where z,z € RY, Ko(-,-) is called the basic kernel which can be any kernel such as RBF kernel or a
polynomial kernel, and ¢(+) is called the factor function which takes the form of

N
q(x) =g+ Z ;i (x, ;) (53)

i=1

where K1 (z,z;) = exp(—1||z — x;]|?) and «;’s are the combination coefficients.
Denote the kernel matrices corresponding to K(+, ) and Ko(+, -) to K and Kj. Then there is a relation
between K and K written as

K = [q(x) Ko(zi, 25)q(z)|nx v = QEKoQ (54)

where @ is a diagonal matrix with diagonal elements g(x;), ¢ = 1,--- ,N. Also denote the vectors
q = (q(z1),q(x2), - ,q(xn))T and a = (a(z1),a(z2), - ,a(xy))?. Then we have ¢ = Kja where K
is an N x (N + 1) matrix

1 k’l(l‘l,.fl) kl(l‘l,.TN)
1 ki(xo,z1) -+ ki(xo,xN)

Kl = . . . . : (55)
1 kl(.’L‘N,,’El) k1<$N,$N)

3.1.2 Kernel optimization

Let us fix the basic kernel Ky and K; for the factor function ¢q. The combination coefficients o will
be chosen to maximize the class separability of the training data in the mapped feature space which is
measured by Fisher scalar. Let us define Fisher scalar

(56)

where S}, represents the ”between-class scatter matrix” and S,, ”within-class scatter matrix”.
Suppose that N7 training data are labeled as y; = 1 and N, training data are labeled as y; = —1,
and N = Nj; + Ns. Then the basic kernel matrix Ky can be partitioned as

K% K
Ko = 11 12) 57
o= (kb o

where the sizes of submatrices KY;, K7, K9, and K9, are Ny x Ny, Ny X No, No x Ny, and Ny x Na,
respectively. Define

L KO 0 1
By = M1 )K o8
0 ( 0 ~K%) NT° (58)
) L KO 0
W() = dlag(k(l)17k32a"' 7k(I)VN> - <N10 H 1 KO > (59)
Ny 22

and My = K{ BoK;, No = K WyK; where the elements of K; are aligned in the same order for K.
Then the Fisher scalar can be written as

T
(6] M()Oé
F(a) - O[TN()O[ '

(60)

MATH697FA Sp21 Project Paper



Setting our objective function F(«a), the optimization problem
max F(a) (61)
has the solution whenever the matrix Ny is nonsingular, and the optimal value is A* at a« = a* where \*
is the largest eigenvalue and o is the corresponding eigenvector of the system
Moya = ANya. (62)

Nonsingularity of the matrix Ny may not be satisfied depending on the problem. If Ny is noticed to
be singular, then modify the problem as

Moo = AM(Ny + ply)a (63)

with the regularization coefficient u, where Iy is the N x N identity matrix.
Xiong[5] used gradient ascent method to calculate the optimal « using the below algorithm.

Algorithm 1: Gradient ascent method to calculate o*

Result: o* = gmazltercnt
1 {(@i,y:) }iz1,... ;v where z; € RY, and y; € {+1};
2 while n < maxIterCnt do
3 Group the data according to their class labels. Calculate Ky, K first, then My, Ny.;
a Initialize a® = (1,0,---,0)7, and set n = 0.;
5
6

Calculate J; = (a™)T Mpa™, and J; = (a™)T Noa™ ;
Update a™ by
1 J1

0™ = a7 4 () (= Mo — T No)a”
A 2
and then normalize a1 .;
7 end
Note) n(t) = 1o(1 — —— === is decreasing.

3.2 Evaluation of models

’ [ P (predicted) N (predicted) |

P (actual) || True Positive False Negative
N (actual) || False Positive True Negative

This table is called confusion matriz. Here are the commonly used metrics to evaluate the performance
of machine learning models.

TP+TN
Accuracy: Ehit ] (64)
N
TP
Precision: ————
recision: -0y (65)
TP
Il ——
Reca TP L FN (66)

3.3 Multidimensional scaling (MDS)

In order to visualize the performance of a classifier in case of high dimensional inputs in a better way,
we consider the projection of the training and test data onto their top two significant dimensions. Here,
multidimensional scaling (MDS) technique is used.

[ref](https:/ /scikit-learn.org/stable/modules/generated /sklearn.manifold. MDS.html)

4 Application - Tumor/Tumor-free Organs Classification Using
Gene Expression Data

4.1 Data set description

GDC portal (https://portal.gdc.cancer.gov/) built up a large open database of cancer genomic/clinical
data. A certain cancer project reposits patients’ gene expression level data and their labels according to
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data fabel: [1. 1 1.1 1.1 1 1 1 1 1 0 0 10101 1 1 1 1 1 11
A/ I I IV IV VR IV IV IV I T PR P IV IV IV P P R DR R T A
o100, 0,0.0 00,00 000.0,.0 00 0.0 0 0 0 0
0.0, 00,0 00,00 0.0.0.0.0.0.0.0.0,.0.0 0.0 0.0
0.0, 0 01
TP1 TP2 TP3 TP4 TPS TP6 TP7 TP8 TP TP10 .. NT41 NT42 NT43 NT44 NT46 NT46 NT47 NT48 NT49 NTSO0
Unnamed: 0
=NSG00000000003 1481 3634 578 4994 1592 2623 6175 3788 3617 3536 ... 3370 3769 2872 3334 5467 6215 3118 3325 3552 4826
ZNSG00000000005 g 58 2 6 16 74 3 332 257 8 . 433 784 2249 9108 1937 474 736 206 782 275
ZNSG00000000419 2078 3351 1625 2276 1450 1843 1619 1569 2567 2956 .. 1158 1280 1297 1229 1571 2432 1486 1162 1528 1940
ZNSG00000000457 1304 1026 1841 3306 2625 1574 2783 1988 1713 957 .. 1318 1061 933 980 1038 992 1143 1389 1016 815
ZNSG00000000460 711 2661 353 1057 707 1083 777 504 638 1453 248 196 231 268 190 232 233 211 216 324
SNSGO00000000938 378 295 345 234 406 243 1259 436 448 659 714 693 1330 2078 818 442 858 264 1000 1075
=NSG00000000971 4366 1618 2588 1790 1264 1939 4250 5358 9037 1375 .. 7369 19277 20395 15823 21997 7797 13500 4588 15627 3963
ZNSG00000001036 2820 2914 5077 1638 1807 3991 3326 3076 5213 2579 .. 2001 3228 3132 2998 4298 3518 3214 2002 3281 1862

ZNSG00000001084 1741 3010 5082 1960 3829 1883 2423 1967 1208 3120 ... 2782 2065 4059 4427 2174 2110 3339 1994 3387 2565
ENSGO0000001167 1478 3048 2469 3717 3307 3588 2270 2479 1555 3599 .. 2025 1514 1861 1880 1445 1828 1533 2558 1586 1593

Figure 1: Input data and labels

the existence of tumors in the certain organ. Figureshows the class labels y € {0, 1}, for the convenience
and, the data matrix x for the RNA-sequence array (from the TCGA-BRCA project), where its rows
and columns corresponds to

e rows: gene labels

e columns: sample indices (TP corresponds to the tumor(-primary) sample with data label 1, and
NT corresponds to the non-tumor sample with data label 0).

Among the 50 TP samples and 50 NT samples, training and test sets are divided with the ratio of
6:4. 10 most relevant genes(rows) are chosen by the BW score on gene j calculated as

o) = Sy mi(@n(5) — 1)

Y e, (#i(5) — 3x)?

where C) denotes the index set of the k-th class (k = 1,2), my is the number of samples in Cj, and
Zr(j) and T represent the average value within the k-th class and of the entire training sample on gene
7, respectively. High value in g implies that the gene j better separates the different classes and gathers
within a class.

(67)

4.2 Software
Python v.3.9 platform and its libraries

e scikit-learn : generate inputs, SVM training (https://scikit-learn.org/stable/modules/svm.html),
multidimensional scaling (https://scikit-learn.org/stable/modules/generated /sklearn.manifold. MDS.html)

e matplotlib.pyplot: visualize the data and performances
e pandas: retrive R dataframe into python
R and its library

e tcgaBiolinks : retrieve tcga data from GDC portal. (https://portal.gdc.cancer.gov/)

4.3 Results

Three different kernels (linear, gaussian, data-dependent) are individually used for training SVMs, mea-
sured by performance metrics in sec and plotted in R? by projecting data using the MDS technique.

10
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The setups for the data-dependent kernel K(x,y) = q(z)T Ko(x,y)q(y) where ¢(x) = Zﬁl ap +

Zﬁl o; Ki(x,2;). Tt is optimized using the algorithm of Xiong, and the hyper-parameters for the
optimization are as below:

e Ky, K are gaussian kernels with the fixed parameter v = ﬁ
o (i) =1x (1 — ——=L_—) for the step size of each gradient-ascent iteration

e maxlterCnt = 1000 but terminated when the objective function starts to decrease at the 894th
step with the objective function value 0.01975309.

It is different from the observation from Xiong [6] that the Within-Class error is typically almost
zero. Even, the objective function value which is given as a ratio of the Between-Class error and the
Within-Class error is still less than 1, which foretells the performance of the kernel would be bad.

The performance of individual kernels on 18 test samples which are labeled as 1 and 22 test samples
which are labeled as 0 are given in Table [I.3] Unfortunately, the linear kernel could only discriminate
the test data but it was still not perfect. It fails at classifying some samples of the label 1. Whereas,
the other two non-linear kernels based on the gaussian kernel didn’t work at all. The values for precision
and recall show that the classifiers output 0 for the entire data.

H Linear SVM ‘ Rbf kernel SVM ‘ Data-driven SVM

Accuracy (%) 80.00 45.00 45.00
Precision 0.92 0.45 0.45
Recall 0.61 1.00 1.00

Table 1: Performances of three different kernels

The visualization of high-dimensional input is aided by the MDS technique which projects the test
data into R?. Test data of two different classes and their support vectors are shown in Figure Blue dots
represent the support vectors, while red and yellow dots are label 0 and 1, respectively. Visualization
gives much easier explanation that the gaussian kernel selects a wrong support vector on the upper right
side of the second figure. The sklearn svm fitting function could not find support vectors. The possible
reason is due to the mistakes on providing test data in case of user-prescribed kernel.
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Data projection to 2D space using MDS
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Figure 2: Projection of data onto 2 significant input features, and support vectors
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