Transportation of Probability measures and its application in Generative models

Hyemin Gu

hgu@umass.edu

March 10, 2023

Hyemin Gu (Oral exam)

Transportation of Probability measures and it

March 10, 2023

Outline

Optimal transport and Gradient flows of Probability measures

- Optimal transport problem
- Gradient flow of measures and flow of transport maps
- Variational representation and its optimization

Generative models

- What is generative modeling and How it is related to transportation of probability measures
- Generative models based on transportation of probability measures
- Common difficulties of these models

Optimal transport and Gradient flows of Probability measures

Notations

\mathcal{X}	A domain. ex) \mathbb{R}^d
$\mathcal{P}(\mathcal{X})$	Set of probability measures on $\mathcal{X}. \int_{\mathcal{X}} dP = 1$
P, Q	Input / target probability measures : $\sigma_{\mathcal{X}} ightarrow [0,\infty)$
П(<i>P</i> , <i>Q</i>)	Set of couplings between P and Q
	$\int_x d\gamma(x,y) = dQ(y)$ and $\int_y d\gamma(x,y) = dP(x)$.
Т	Transport map. $\mathcal{T}: \mathcal{X} \to \mathcal{X}$
T _# P	Pushforward measure. $P(T^{-1}(A))$ for $A \in \sigma_{\mathcal{X}}$
F	Free energy functional. $F:\mathcal{P}(\mathcal{X}) ightarrow\mathbb{R}$
f ^c	c-transform of f. $f^{c}(y) = \inf_{x} c(x, y) - f(x)$
f*	Legendre transform of f . $f^*(t) = \sup_x \langle t, x \rangle - f(x)$
C _b	Set of continuous bounded functions $C_b(\mathcal{X})$
\mathcal{H}_k	RKHS generated by kernel $k(x, y)$

3

Optimal transport problem

Monge

$$\inf_{T:\mathcal{X}\to\mathcal{X}}\int c(x,T(x))dP(x):P,Q\in\mathcal{P}(\mathcal{X}),T_{\#}P=Q \tag{1}$$

Kantorovich

$$\inf_{\gamma \in \Pi(P,Q)} \int \int c(x,y) d\gamma(x,y)$$
(2)

ex) $c(x,y) = |x - y|^p$, $p \ge 1$: We obtain Wasserstein_p distance $W_p^p(P,Q)$ Kantorovich Dual

$$\sup_{\phi:\mathcal{X}\to\mathbb{R}}\int\phi(x)dP(x)+\int\phi^{c}(y)dQ(y):\phi(x)+\phi^{c}(y)\leq c(x,y) \quad (3)$$

ex) $W_1(P,Q) = \sup_{\phi:1-\text{Lipschitz}} \int \phi(x) dP(x) - \int \phi(y) dQ(y)$

Gradient flows - Continuity equation

Consider a flow of transport maps T_t which gives a flow of probability measures $P_t, t \ge 0$ transported from P to Q. Gradient flows endowed with Wasserstein distance can model this problem as:

$$\partial_t P_t + \nabla \cdot (P_t \mathbf{V}_t) = 0, P_0 = P, P_\infty = Q$$
 (4)

6/36

where the vector field V_t is the direction to get P_t closer to Q. Question) How to find if a probability measure is close to another?

Divergences

P = Q if $\int \phi dP = \int \phi dQ$ for all bounded measurable functions $\phi \in \mathcal{M}_b(\mathcal{X})$. Divergence $D : \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to [0, \infty]$ is a function which satisfies

$$D(P,Q) = 0 \quad iff \quad P = Q. \tag{5}$$

So, consider a functional $F : \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ such that $F(P_t) = D(P_t, Q)$ and let $F(P_t) \to 0$. We say F, free energy functional.

• ex) $F(P_t) = D_{KL}(P_t || Q) = \mathbb{E}_{P_t} \left[\log \frac{dP_t}{dQ} \right] = \mathbb{E}_Q \left[\frac{dP_t}{dQ} \log \frac{dP_t}{dQ} \right]$ whenever $P_t \ll Q$, otherwise $+\infty$.

f-divergences

Definition) *f*-divergence

$$\begin{split} f:(0,\infty) &\to \mathbb{R} \text{ convex, } f(1) = 0 \text{, lower semi-continuous} \\ F(P) &= D_f(P || Q) := \mathbb{E}_Q \left[f(\frac{dP}{dQ}) \right] \\ \text{Consider super linear } f \text{ i.e. } \lim_{t \to +\infty} \frac{f(t)}{t} = +\infty \text{ so that} \\ D_f(P || Q) &< \infty \text{ only if } P << Q. \end{split}$$

• ex)
$$f_{\mathcal{KL}}(x) = x \log x$$
, $f_{\alpha}(x) = \frac{x^{\alpha}-1}{\alpha(\alpha-1)}$, $\alpha > 1$

•
$$(P, Q) \mapsto D_f(P || Q)$$
 is convex.

•
$$P \mapsto D_f(P || Q)$$
 is strictly convex.

- Asymmetric.
- Variational representation of *f*-divergences

$$D_f(P \| Q) = \sup_{\phi \in C_b} \mathbb{E}_P[\phi] - \mathbb{E}_Q[f^*(\phi)]$$
(6)

f-divergence is asymmetric

Figure by John Winn.

Integral probability metrics

Definition) Integral probability metric For some function space \mathcal{F} ,

$$F(P) = d_{\mathcal{F}}(P,Q) := \sup_{\phi \in \mathcal{F}} E_P[\phi] - E_Q[\phi]$$

• ex) Maximum Mean Discrepancy:

$$\mathcal{F} = \{ \phi \in \mathcal{H}_k : \|\phi\|_{\mathcal{H}_k} \leq 1, \mathcal{H}_k : RKHS \}$$

• ex)
$$W_1$$
: $\mathcal{F} = \{\phi: 1 - \mathsf{Lipschitz}\}$

- A distance.
- Not require absolute continuity between probability measures.
- Not strictly convex.

(7

Gradient flow which minimizes KL divergence

Return to the problem of finding a transport map T_t which transports $P_t, t \ge 0$ over time by the gradient flow

$$\partial_t P_t + \nabla \cdot (P_t \mathbf{V_t}) = 0, P_0 = P, P_\infty = Q.$$
 (8)

ex) [BVE22] Choose V_t in order to minimize the KL divergence of P_t and Q. Then P_t can be written as

$$P_t(x) = P(T_t(x)) \exp\left(-\int_0^t \nabla \cdot \mathbf{V}_\tau \left(T_\tau(x)\right) d\tau\right), x \sim P.$$
 (9)

Now let's see how to select V_t in order to minimize F.

Free energy functionals and physical meaning

Consider free energy functional $F : \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ consisting of three terms: internal energy, potential energy, and interaction energy

$$F(P) = \int U(P(x))dx + \int V(x)dP(x) + \int \int W(x,y)dP(x)dP(y)$$
(10)

where $U \in C^1$, U, U' of polynomial growths. We can write KL divergence adjusted to the form above.

•
$$F(P) = D_{KL}(P || Q)$$
:
 $D_{KL}(P || Q) = \mathbb{E}_P \left[\frac{dP}{dQ} \right] = \int P(x) \log P(x) dx - \int \log Q(x) dP(x)$
• $F(P) = D_{\alpha}(P || Q)$:
 $D_{\alpha}(P || Q) = \frac{1}{\alpha(\alpha - 1)} \mathbb{E}_Q \left[\left(\frac{dP}{dQ} \right)^{\alpha} - 1 \right] = \frac{1}{\alpha(\alpha - 1)} \mathbb{E}_P \left[\left(\frac{dP}{dQ} \right)^{\alpha - 1} - 1 \right]$

First variation of free energy functional

The free energy functional F of the form (10) admits the (Gateaux) derivative of F w.r.t. P: First variation $\frac{\delta F}{\delta P}$ satisfies

$$\frac{d}{d\epsilon}F(P+\epsilon\rho)|_{\epsilon=0} = \int \frac{\delta F}{\delta P} d\rho.$$
(11)

For (10), closed form exists and is unique up to a constant:

$$\frac{\delta F}{\delta P}(x) = U'(P(x)) + V(x) + \int W(y,x)dP(y) + \int W(x,y')dP(y').$$
(12)

• $F(P) = D_{KL}(P||Q)$: $U(x) = x \log x$, $V(x) = -\log Q(x)$ $\Rightarrow \frac{\delta F}{\delta P}(x) = \log P(x) - \log Q(x)$

• Other case? Calculate (11) directly.

First variation of variational representation

Once we solve the variational representations over functions ϕ $F(P) = D_f(P || Q) = \sup_{\phi \in C_b} \mathbb{E}_P[\phi] - \mathbb{E}_Q[f^*(\phi)]$ or $F(P) = d_F(P, Q) = \sup_{\phi \in \mathcal{F}} E_P[\phi] - E_Q[\phi]$, we get $F(P + \epsilon \rho) = F(P) + \epsilon \int \phi d\rho$

where ϕ is an optimizer. And so the first variation $\frac{\delta F}{\delta P} = \phi$.

(13)

Gradient flow which minimizes F

Determine the vector field as $\mathbf{V}_{\mathbf{t}} = -\nabla \frac{\delta F}{\delta P_t}$. Then the continuity equation

$$\partial_t P_t + \nabla \cdot (P_t \mathbf{V}_t) = 0, P_0 = P, P_\infty = Q$$
 (14)

reduces to

$$\partial_t P_t = \nabla \cdot \left(P_t \nabla \frac{\delta F}{\delta P_t} \right), P_0 = P, P_\infty = Q.$$
 (15)

Moreover, in case we use the variational representations of f-divergences or IPMs and obtain an optimizer ϕ_t , we have

$$\partial_t P_t = \nabla \cdot (P_t \nabla \phi_t), P_0 = P, P_\infty = Q.$$
(16)

Numerical schemes I

Minimizing movement scheme [JKO98]

$$P_{t+1} = \operatorname{arginf}_{R} \frac{W_{2}^{2}(P_{t}, R)}{2\Delta t} + F(R)$$
(17)

- *F* minimizing property : $\frac{W_2^2(P_t, P_{t+1})}{2\Delta t} + F(P_{t+1}) \le F(P_t)$
- Optimality condition: $\frac{\phi}{\Delta t} + \frac{\delta F}{\delta P_{t+1}} = constant$ where ϕ denotes the Kantorovich potential of (3) with cost $\frac{1}{2}|x y|^2$.

•
$$\frac{T(x)-x}{\Delta t} = \frac{\nabla \phi}{\Delta t} = -\nabla \frac{\delta F}{\delta P_{t+1}}$$
 and get (Implicit) Proximal gradient

$$P_{t+1} = T_{\#}P_t = \left(I - \Delta t \nabla \frac{\delta F}{\delta P_{t+1}}\right)_{\#} (P_t).$$
(18)

Numerical schemes II

Forward Euler

Exchange the implicit term with (less costly) explicit \Rightarrow Gradient descent

$$P_{t+1} = \left(I - \Delta t \nabla \frac{\delta F}{\delta P_t}\right)_{\#} (P_t).$$
(19)

Solving the variational representations for the functional ϕ is much easier than directly solving for the transport map T_t or the measure P_{t+1} . Then recover T_t and P_{t+1} by the (Forward) Euler,

•
$$T_t = (I - \Delta t \nabla \phi_t) \circ \cdots \circ (I - \Delta t \nabla \phi_0)$$

•
$$P_{t+1} = (T_t)_{\#} P_0.$$

<u>Idea</u>: Given finite number of samples, optimize ϕ_t over some function spaces $\mathcal{F} \subset C_b$ parametrized by Neural networks, Reproducing kernel Hilbert spaces, etc.

Neural networks

• Given i.i.d. samples $X^{(i)} \sim Q$ and $Y_t^{(i)} \sim P_t$ for $i = 1, \dots, N$, approximate $D_f(P_t || Q)$ by optimizing $\phi_t(x) = \mathcal{NN}(x; W_t)$

$$\sup_{W_t} \frac{1}{N} \sum_i \phi(Y_t^{(i)}; W_t) - \frac{1}{N} \sum_i f^*(\phi(X^{(i)}; W_t)) + regularizer.$$
(20)

- Choose right activation functions and/or regularizer to approximate (subsets of) continuous real valued functions.
 - Lipschitz: $||W'||_2 \le L^{1/D}, l = 1, \dots, D$ with ReLU(x) = max(x, 0) activation functions (Spectral normalization [MKKY18])
 - Lipschitz: add gradient penalty term in the loss regularizer = $\int \max(|\nabla \phi(x)|^2/L^2 - 1, 0)dP(x)$ [BDK+22]
 - Smoother function: smoother activation functions
 - Bounded function: bounded activation functions in the last layer
- $\nabla \phi_t(x; W_t)$ can be attained by Automatic Differentiation.

Reproducing kernel Hilbert spaces I

- RKHS \mathcal{H}_k with kernel k. $k(\cdot, x)$ is continuous and $\sup_x \sqrt{k(x,x)} < \infty$ so that $\mathcal{H}_k \subset C_b(\mathcal{X})$.
- Choose a kernel k and use Representer theorem on a subset of data.

Representer theorem

In RKHS \mathcal{H}_k with kernel k, given

- *m* training samples $x_i, i = 1, \cdots, m$
- a strictly increasing function $g:[0,\infty)
 ightarrow\mathbb{R}$
- an arbitrary error function E

any minimizer of the empirical risk

$$\phi^* = \operatorname{argmin}_{\phi \in \mathcal{H}_k} \left\{ E\left((x_i, \phi(x_i))_{i=1}^m) + g(\|\phi\|) \right\}$$
(21)

admits a representation of the form $\phi^*(x) = \sum_{i=1}^m \alpha_i k(x, x_i)$, $\alpha_i \in \mathbb{R}$.

Reproducing kernel Hilbert spaces II

- Given i.i.d. samples $X^{(i)} \sim Q$ and $Y_t^{(i)} \sim P_t$ for $i = 1, \dots, N$, choose m samples $\left\{Z_t^{(j)}, j = 1, \dots, m\right\}$ from $\left\{X^{(i)}, i = 1, \dots, N\right\} \cup \left\{Y_t^{(i)}, i = 1, \dots, N\right\}.$
- To approximate $D_f({{P}_t}\|Q)$, optimize ${m lpha_t} \in {\mathbb{R}^m}$ by

$$\sup_{\alpha_t} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{m} \alpha_t^j k\left(Y_t^{(i)}, Z_t^{(j)}\right) - \frac{1}{N} \sum_{i=1}^{N} f^*\left(\sum_{j=1}^{m} \alpha_t^j k\left(X^{(i)}, Z_t^{(j)}\right)\right) + regularizer$$

and get optimizer
$$\hat{\phi_t}(\mathbf{x}) = \sum_{j=1}^m \hat{\alpha_t^j} k\left(\mathbf{x}, Z_t^{(j)}\right)$$

• $\nabla \hat{\phi_t}(\mathbf{x}) = \sum_{j=1}^m \hat{\alpha_t^j} \nabla_{\mathbf{x}} k\left(\mathbf{x}, Z_t^{(j)}\right)$

(22

Another approach in RKHS

KL Approximate Lower bound Estimator [GAG21] - "Primal"

$$\mathsf{KALE}_{\lambda}^{P}(P\|Q) = (1+\lambda) \max_{\phi \in \mathcal{H}_{k}} \mathbb{E}_{P}[\phi] - \mathbb{E}_{Q}[\exp(\phi) - 1] - \frac{\lambda}{2} \|\phi\|_{\mathcal{H}_{k}}^{2}$$
(23)

Write $J(\phi) = -KALE_{\lambda}^{P}(P||Q)$. (convex) The optimal value of (23) is $\hat{J} = \max_{\phi} < 0, \phi > -J(\phi) = J^{*}(0)$. Apply infimal convolution theorem $(f_{1} * f_{2})^{*} = f_{1}^{*} + f_{2}^{*}$ on $J^{*}(0)$.

KL Approximate Lower bound Estimator [GAG21] - "Dual"

$$(D): \min_{\psi>0} \mathbb{E}_{Q}[\psi(\log\psi-1)+1] + \frac{1}{2\lambda} \left\| \int \psi(x)k(x,\cdot)dQ(x) - \mu_{P} \right\|_{\mathcal{H}_{k}}^{2} (24)$$

Generative models

문 🛌 🖻

Generative models and transportation of measures

Generative models

In Machine learning discipline, generative modeling is to model a target probability distribution and produce "new" samples from the model which are thought to be from the true probability distribution.

* It can be discriminated from "sampling" in the sense of "How much information is provided about the target probability distribution" (target density is known up to a certain point or only samples are given).

Why transportation of probability measures?

We begin generating samples from a known distribution which is easy to sample from. Transportation of probability measures arises in this context.

Fokker-Planck equation and particles ODE model

Many generative models aim to minimize KL divergence. The KL gradient flow is well-known Fokker-Planck equation. Given densities p_t , q, the Fokker-Planck equation reads

$$\partial_t p_t = \nabla \cdot (p_t \nabla \log (p_t/q)) = \Delta p_t - \nabla \cdot (p_t \nabla \log q).$$
 (25)

Interacting particles systems: Particles ODE

The gradient flow formulation in (25) lead to a system of ODEs for the particles

$$\dot{Y}_t = -\nabla \log \left(p_t/q \right) (Y_t), Y_0 \sim P_0.$$
(26)

Fokker-Planck equation and particles SDE model

Given densities p_t , q, the Fokker-Planck equation reads

$$\partial_t p_t = \nabla \cdot (p_t \nabla \log (p_t/q)) = \Delta p_t - \nabla \cdot (p_t \nabla \log q).$$
 (27)

Langevin diffusion: Particles SDE

The diffusion Δp_t in the (RHS) of (27) can be separately modeled as Brownian motion $W_t \sim N(0, tI)$, leading to a system of SDEs for the particles

$$dY_t = \nabla \log q(Y_t) dt + \sqrt{2} dW_t, Y_0 \sim P_0.$$
(28)

Stein variational gradient descent [Liu17]

Modify the Fokker-Planck equation further by letting $h_t = p_t/q$,

$$\partial_t h_t = (\nabla + \nabla \log q) \cdot \nabla h_t.$$
 (29)

" $\nabla + \nabla \log q$ " is named Stein operator and induces a KL gradient flow endowed with Stein-Wasserstein metric.

In RKHS \mathcal{H}_k with kernel k, parametrize the Stein operator by kernels

$$g(x,y) = \nabla_x k(x,y) + \nabla \log q(x)k(x,y).$$
(30)

Given i.i.d. particles $Y_0^{(i)} \sim P_0, i = 1, \cdots, N$, solve a system of ODEs

$$\dot{Y}_t = \mathbf{V}_t(Y_t) \tag{31}$$

where $\mathbf{V}_{\mathbf{t}}(x) = \frac{1}{N} \sum_{i=1}^{N} g(Y_t^{(i)}, x)$ from the representer theorem.

Normalizing flows [RM15]

Assume there is a smooth invertible map $f : \mathcal{X} \to \mathcal{X}$ which maps the density p_0 to q as

$$q(x) = p_0(y) \left| \det \frac{\partial f^{-1}}{\partial x} \right| = p_0(y) \left| \det \frac{\partial f}{\partial y} \right|^{-1}.$$
 (32)

NFs maximize log-likelihood(precisely, ELBO) of the third term in (32).

Continuous normalizing flows [CRBD18] and ODEs

Parametrize temporary transport map by time t and induce particles ODEs $\dot{Y}_t = f_t(Y_t)$. $T_t(Y_0) = Y_0 + \int_0^t f_s(Y_s) ds$. The log-likelihood evolves by

$$\frac{d\log p_t(y)}{dt} = -Tr\left(\frac{\partial f_t}{\partial y}\right).$$
(33)

More SDE approaxches [SSDK⁺20]

A SDE or It \hat{o} process describes an evolution of random variable $X_t \in \mathbb{R}^d$ as

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t$$
(34)

where $b(\mathbf{x}, t) \in \mathbb{R}^d$ and $\sigma(\mathbf{x}, t) \in \mathbb{R}^{d \times d}$.

If X_t is the solution of (34), its density $p(\mathbf{x}, t)$ satisfies the forward and backward evolutions [Øks14]:

$$\partial_t p(\mathbf{x}, t) = -\nabla_{\mathbf{x}} \cdot (b(\mathbf{x}, t)p(\mathbf{x}, t)) + \frac{1}{2} \sum_{i,j} \partial_{ij}(\sigma_i^T \sigma_j(\mathbf{x}, t)p(\mathbf{x}, t)) \quad (35)$$

$$-\partial_t \boldsymbol{p}(\mathbf{x},t) = \boldsymbol{b}(\mathbf{x},t) \nabla_{\mathbf{x}} \cdot \boldsymbol{p}(\mathbf{x},t) + \frac{1}{2} \sum_{i,j} \boldsymbol{\sigma}_i^T \boldsymbol{\sigma}_j(\mathbf{x},t) \partial_{ij} \boldsymbol{p}(\mathbf{x},t)$$
(36)

<u>Idea</u>: Handle the forward transition probability $q(X_t|X_{t-1})$ with (35) or the backward transition probability $q(X_{t-1}|X_t)$ with (36) to be normal.

Common difficulties of these models: High dimensionality

Gradient signals are diluted due to various regularizations.
 ex) Constraining ||∇φ(x)|| ≤ L leads to the average axis-wise velocity component to be |[∇φ(x)]_i| ≤ L/√d. Slow.

 $L = \mathcal{O}(\sqrt{d})$? It might reduce the stability of the method.

- Target distribution is supported in low dimensional manifolds approximation where $Q(x) \approx 0$ is inaccurate.
- ullet \Rightarrow Relieve the problem by projecting to a latent space :
 - Consider a low dimensional manifold $S \subset supp(Q)$ in \mathbb{R}^d and for d' < d a projection map $\mathcal{E}_{d'} : \mathbb{R}^d \to \mathbb{R}^{d'}$ which is invertible in S.
 - Call $\mathcal{E}_{d'}(\mathbb{R}^d)$ be a latent space for d' dimensional features.
 - A systematic approach to obtain feature vectors?

Self-attention [VSP+17, TJ19, LEE21]

X, **Y**: input and output random variables in \mathbb{R}^d . For simplicity, assume independency among X_i 's and Y_i 's. Factorization of the joint distribution using conditional independence among random variables:

$$p(x_{1:d}, y_{1:d}) = \prod_{i=1}^{d} p(x_i) p(y_i | x_{1:i-1}) = \prod_{i=1}^{d} p(x_i) p(y_i | Pa(y_i))$$
(37)

Figure: Bipartite graph of input entries and output entries.
(a) Chain rule.
(b) CNN.
(c) Self-attention in transformer.

Any questions OR Clarification

∃ →

Bibliography I

Jeremiah Birrell, Paul Dupuis, Markos Katsoulakis, Yannis Pantazis, and Luc Rey-Bellet. (f,gamma)-divergences: Interpolating between f-divergences and integral probability metrics.

Journal of Machine Learning Research, 23:1–70, 01 2022.

Nicholas M. Boffi and Eric Vanden-Eijnden. Probability flow solution of the fokker-planck equation, 2022.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.

32 / 36

Bibliography II

Pierre Glaser, Michael Arbel, and Arthur Gretton. Kale flow: A relaxed kl gradient flow for probabilities with disjoint support.

In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, volume 34, pages 8018–8031. Curran Associates, Inc., 2021.

Richard Jordan, David Kinderlehrer, and Felix Otto.
 The variational formulation of the fokker-planck equation.
 SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

JUSTIN SEONYONG LEE.

Transformers: a primer, 2021.

http://www.columbia.edu/ jsl2239/transformers.html.

Bibliography III

Qiang Liu.

Stein variational gradient descent as gradient flow.

In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. 02 2018.

Bernt Øksendal.

Stochastic Differential Equations: An Introduction with Applications (Universitext).

Springer, 6th edition, January 2014.

Bibliography IV

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.

In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML'15, page 1530–1538. JMLR.org, 2015.

Filippo Santambrogio.

Functionals on the space of probabilities, pages 249–284. Springer International Publishing, Cham, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.

Score-based generative modeling through stochastic differential equations, 11 2020.

Bibliography V

Mohammed Terry-Jack.

Deep learning: The transformer, 2019. https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.