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Optimal transport and Gradient
flows of Probability measures
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Notations

X A domain. ex) Rd

P(X ) Set of probability measures on X .
∫
X dP = 1

P, Q Input / target probability measures : σX → [0,∞)

Π(P,Q)
Set of couplings between P and Q∫
x dγ(x , y) = dQ(y) and

∫
y dγ(x , y) = dP(x).

T Transport map. T : X → X
T#P Pushforward measure. P(T−1(A)) for A ∈ σX
F Free energy functional. F : P(X ) → R
f c c-transform of f . f c(y) = infx c(x , y) − f (x)

f ∗ Legendre transform of f . f ∗(t) = supx < t, x > −f (x)

Cb Set of continuous bounded functions Cb(X )

Hk RKHS generated by kernel k(x , y)
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Optimal transport problem

Monge

inf
T :X→X

∫
c(x ,T (x))dP(x) : P,Q ∈ P(X ),T#P = Q (1)

Kantorovich

inf
γ∈Π(P,Q)

∫ ∫
c(x , y)dγ(x , y) (2)

ex) c(x , y) = |x − y |p, p ≥ 1 : We obtain Wassersteinp distance W p
p (P,Q)

Kantorovich Dual

sup
ϕ:X→R

∫
ϕ(x)dP(x) +

∫
ϕc(y)dQ(y) : ϕ(x) + ϕc(y) ≤ c(x , y) (3)

ex) W1(P,Q) = supϕ:1−Lipschitz

∫
ϕ(x)dP(x) −

∫
ϕ(y)dQ(y)

Hyemin Gu (Oral exam) Transportation of Probability measures and its application in Generative modelsMarch 10, 2023 5 / 36



Gradient flows - Continuity equation

Consider a flow of transport maps Tt which gives a flow of probability
measures Pt , t ≥ 0 transported from P to Q.
Gradient flows endowed with Wasserstein distance can model this problem
as:

∂tPt + ∇ · (PtVt) = 0,P0 = P,P∞ = Q (4)

where the vector field Vt is the direction to get Pt closer to Q.
Question) How to find if a probability measure is close to another?
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Divergences

P = Q if
∫
ϕdP =

∫
ϕdQ for all bounded measurable functions

ϕ ∈ Mb(X ). Divergence D : P(X ) × P(X ) → [0,∞] is a function which
satisfies

D(P,Q) = 0 iff P = Q. (5)

So, consider a functional F : P(X ) → R such that F (Pt) = D(Pt ,Q) and
let F (Pt) → 0. We say F , free energy functional.

ex) F (Pt) = DKL(Pt∥Q) = EPt

[
log dPt

dQ

]
= EQ

[
dPt
dQ log dPt

dQ

]
whenever Pt << Q, otherwise +∞.
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f -divergences

Definition) f -divergence

f : (0,∞) → R convex, f (1) = 0, lower semi-continuous

F (P) = Df (P∥Q) := EQ

[
f ( dP

dQ )
]

Consider super linear f i.e. limt→+∞
f (t)
t = +∞ so that

Df (P∥Q) <∞ only if P << Q.

ex) fKL(x) = x log x , fα(x) = xα−1
α(α−1) , α > 1

(P,Q) 7→ Df (P∥Q) is convex.

P 7→ Df (P∥Q) is strictly convex.

Asymmetric.

Variational representation of f -divergences

Df (P∥Q) = sup
ϕ∈Cb

EP [ϕ] − EQ [f ∗(ϕ)] (6)

Hyemin Gu (Oral exam) Transportation of Probability measures and its application in Generative modelsMarch 10, 2023 8 / 36



f -divergence is asymmetric

Figure by John Winn.
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Integral probability metrics

Definition) Integral probability metric

For some function space F ,

F (P) = dF (P,Q) := sup
ϕ∈F

EP [ϕ] − EQ [ϕ] (7)

ex) Maximum Mean Discrepancy:
F = {ϕ ∈ Hk : ∥ϕ∥Hk

≤ 1,Hk : RKHS}
ex) W1: F = {ϕ : 1 − Lipschitz}
A distance.

Not require absolute continuity between probability measures.

Not strictly convex.
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Gradient flow which minimizes KL divergence

Return to the problem of finding a transport map Tt which transports
Pt , t ≥ 0 over time by the gradient flow

∂tPt + ∇ · (PtVt) = 0,P0 = P,P∞ = Q. (8)

ex) [BVE22] Choose Vt in order to minimize the KL divergence of Pt and
Q. Then Pt can be written as

Pt(x) = P(Tt(x)) exp

(
−
∫ t

0
∇ · Vτ (Tτ (x)) dτ

)
, x ∼ P. (9)

Now let’s see how to select Vt in order to minimize F .
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Free energy functionals and physical meaning [San15]

Consider free energy functional F : P(X ) → R consisting of three terms:
internal energy, potential energy, and interaction energy

F (P) =

∫
U(P(x))dx +

∫
V (x)dP(x) +

∫ ∫
W (x , y)dP(x)dP(y) (10)

where U ∈ C 1, U,U ′ of polynomial growths.
We can write KL divergence adjusted to the form above.

F (P) = DKL(P∥Q) :

DKL(P∥Q) = EP

[
dP
dQ

]
=

∫
P(x) logP(x)dx −

∫
logQ(x)dP(x)

F (P) = Dα(P∥Q) :

Dα(P∥Q) = 1
α(α−1)EQ

[(
dP
dQ

)α
− 1

]
= 1

α(α−1)EP

[(
dP
dQ

)α−1
− 1

]
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First variation of free energy functional

The free energy functional F of the form (10) admits the (Gateaux)
derivative of F w.r.t. P: First variation δF

δP satisfies

d

dϵ
F (P + ϵρ)|ϵ=0 =

∫
δF

δP
dρ. (11)

For (10), closed form exists and is unique up to a constant:

δF

δP
(x) = U ′(P(x)) +V (x) +

∫
W (y , x)dP(y) +

∫
W (x , y ′)dP(y ′). (12)

F (P) = DKL(P∥Q) : U(x) = x log x , V (x) = − logQ(x)
⇒ δF

δP (x) = logP(x) − logQ(x)

Other case? Calculate (11) directly.
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First variation of variational representation

Once we solve the variational representations over functions ϕ
F (P) = Df (P∥Q) = supϕ∈Cb

EP [ϕ] − EQ [f ∗(ϕ)] or
F (P) = dF (P,Q) = supϕ∈F EP [ϕ] − EQ [ϕ], we get

F (P + ϵρ) = F (P) + ϵ

∫
ϕdρ (13)

where ϕ is an optimizer. And so the first variation δF
δP = ϕ.
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Gradient flow which minimizes F

Determine the vector field as Vt = −∇ δF
δPt

. Then the continuity equation

∂tPt + ∇ · (PtVt) = 0,P0 = P,P∞ = Q (14)

reduces to

∂tPt = ∇ ·
(
Pt∇

δF

δPt

)
,P0 = P,P∞ = Q. (15)

Moreover, in case we use the variational representations of f -divergences
or IPMs and obtain an optimizer ϕt , we have

∂tPt = ∇ · (Pt∇ϕt) ,P0 = P,P∞ = Q. (16)
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Numerical schemes I

Minimizing movement scheme [JKO98]

Pt+1 = arginfR
W 2

2 (Pt ,R)

2∆t
+ F (R) (17)

F minimizing property :
W 2

2 (Pt ,Pt+1)
2∆t + F (Pt+1) ≤ F (Pt)

Optimality condition: ϕ
∆t + δF

δPt+1
= constant where ϕ denotes the

Kantorovich potential of (3) with cost 1
2 |x − y |2.

T (x)−x
∆t = ∇ϕ

∆t = −∇ δF
δPt+1

and get (Implicit) Proximal gradient

Pt+1 = T#Pt =

(
I − ∆t∇ δF

δPt+1

)
#

(Pt). (18)
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Numerical schemes II

Forward Euler

Exchange the implicit term with (less costly) explicit ⇒ Gradient descent

Pt+1 =

(
I − ∆t∇ δF

δPt

)
#

(Pt). (19)

Solving the variational representations for the functional ϕ is much easier
than directly solving for the transport map Tt or the measure Pt+1. Then
recover Tt and Pt+1 by the (Forward) Euler,

Tt = (I − ∆t∇ϕt) ◦ · · · ◦ (I − ∆t∇ϕ0)

Pt+1 = (Tt)#P0.

Idea: Given finite number of samples, optimize ϕt over some function
spaces F ⊂ Cb parametrized by Neural networks, Reproducing kernel
Hilbert spaces, etc.

Hyemin Gu (Oral exam) Transportation of Probability measures and its application in Generative modelsMarch 10, 2023 17 / 36



Neural networks

Given i.i.d. samples X (i) ∼ Q and Y
(i)
t ∼ Pt for i = 1, · · · ,N,

approximate Df (Pt∥Q) by optimizing ϕt(x) = NN (x ;Wt)

sup
Wt

1

N

∑
i

ϕ(Y
(i)
t ;Wt) −

1

N

∑
i

f ∗(ϕ(X (i);Wt)) + regularizer . (20)

Choose right activation functions and/or regularizer to approximate
(subsets of) continuous real valued functions.

Lipschitz: ∥W l∥2 ≤ L1/D , l = 1, · · · ,D with ReLU(x) = max(x , 0)
activation functions (Spectral normalization [MKKY18])
Lipschitz: add gradient penalty term in the loss
regularizer =

∫
max(|∇ϕ(x)|2/L2 − 1, 0)dP(x) [BDK+22]

Smoother function: smoother activation functions
Bounded function: bounded activation functions in the last layer

∇ϕt(x ;Wt) can be attained by Automatic Differentiation.
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Reproducing kernel Hilbert spaces I

RKHS Hk with kernel k. k(·, x) is continuous and
supx

√
k(x , x) <∞ so that Hk ⊂ Cb(X ).

Choose a kernel k and use Representer theorem on a subset of data.

Representer theorem

In RKHS Hk with kernel k , given

m training samples xi , i = 1, · · · ,m
a strictly increasing function g : [0,∞) → R
an arbitrary error function E

any minimizer of the empirical risk

ϕ∗ = argminϕ∈Hk
{E ((xi , ϕ(xi ))mi=1) + g(∥ϕ∥)} (21)

admits a representation of the form ϕ∗(x) =
∑m

i=1 αik(x , xi ), αi ∈ R.
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Reproducing kernel Hilbert spaces II

Given i.i.d. samples X (i) ∼ Q and Y
(i)
t ∼ Pt for i = 1, · · · ,N,

choose m samples
{
Z

(j)
t , j = 1, · · · ,m

}
from{

X (i), i = 1, · · · ,N
}
∪
{
Y

(i)
t , i = 1, · · · ,N

}
.

To approximate Df (Pt∥Q), optimize αt ∈ Rm by

sup
αt

1

N

N∑
i=1

m∑
j=1

αj
tk

(
Y

(i)
t ,Z

(j)
t

)
− 1

N

N∑
i=1

f ∗

 m∑
j=1

αj
tk

(
X (i),Z

(j)
t

)
+ regularizer

(22)

and get optimizer ϕ̂t(x) =
∑m

j=1
ˆ
αj
tk

(
x,Z

(j)
t

)
.

∇ϕ̂t(x) =
∑m

j=1
ˆ
αj
t∇xk

(
x,Z

(j)
t

)
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Another approach in RKHS

KL Approximate Lower bound Estimator [GAG21] - “Primal”

KALEP
λ (P∥Q) = (1 + λ) max

ϕ∈Hk

EP [ϕ] − EQ [exp(ϕ) − 1] − λ

2
∥ϕ∥2Hk

(23)

Write J(ϕ) = −KALEP
λ (P∥Q). (convex)

The optimal value of (23) is Ĵ = maxϕ < 0, ϕ > −J(ϕ) = J∗(0).
Apply infimal convolution theorem (f1 ∗ f2)∗ = f ∗1 + f ∗2 on J∗(0).

KL Approximate Lower bound Estimator [GAG21] - “Dual”

(D) : min
ψ>0

EQ [ψ(logψ− 1) + 1] +
1

2λ

∥∥∥∥∫ ψ(x)k(x , ·)dQ(x) − µP

∥∥∥∥2
Hk

(24)
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Generative models
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Generative models and transportation of measures

Generative models

In Machine learning discipline, generative modeling is to model a target
probability distribution and produce “new” samples from the model which
are thought to be from the true probability distribution.

* It can be discriminated from “sampling” in the sense of “How much
information is provided about the target probability distribution” (target
density is known up to a certain point or only samples are given).

Why transportation of probability measures?

We begin generating samples from a known distribution which is easy to
sample from. Transportation of probability measures arises in this context.
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Fokker-Planck equation and particles ODE model

Many generative models aim to minimize KL divergence. The KL gradient
flow is well-known Fokker-Planck equation.
Given densities pt , q, the Fokker-Planck equation reads

∂tpt = ∇ · (pt∇ log (pt/q)) = ∆pt −∇ · (pt∇ log q). (25)

Interacting particles systems: Particles ODE

The gradient flow formulation in (25) lead to a system of ODEs for the
particles

Ẏt = −∇ log (pt/q) (Yt),Y0 ∼ P0. (26)

Hyemin Gu (Oral exam) Transportation of Probability measures and its application in Generative modelsMarch 10, 2023 24 / 36



Fokker-Planck equation and particles SDE model

Given densities pt , q, the Fokker-Planck equation reads

∂tpt = ∇ · (pt∇ log (pt/q)) = ∆pt −∇ · (pt∇ log q). (27)

Langevin diffusion: Particles SDE

The diffusion ∆pt in the (RHS) of (27) can be separately modeled as
Brownian motion Wt ∼ N(0, tI ), leading to a system of SDEs for the
particles

dYt = ∇ log q(Yt)dt +
√

2dWt ,Y0 ∼ P0. (28)
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Stein variational gradient descent [Liu17]

Modify the Fokker-Planck equation further by letting ht = pt/q,

∂tht = (∇ + ∇ log q) · ∇ht . (29)

”∇ + ∇ log q” is named Stein operator and induces a KL gradient flow
endowed with Stein-Wasserstein metric.
In RKHS Hk with kernel k , parametrize the Stein operator by kernels

g(x , y) = ∇xk(x , y) + ∇ log q(x)k(x , y). (30)

Given i.i.d. particles Y
(i)
0 ∼ P0, i = 1, · · · ,N, solve a system of ODEs

Ẏt = Vt(Yt) (31)

where Vt(x) = 1
N

∑N
i=1 g(Y

(i)
t , x) from the representer theorem.
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Normalizing flows [RM15]

Assume there is a smooth invertible map f : X → X which maps the
density p0 to q as

q(x) = p0(y)

∣∣∣∣det
∂f −1

∂x

∣∣∣∣ = p0(y)

∣∣∣∣det
∂f

∂y

∣∣∣∣−1

. (32)

NFs maximize log-likelihood(precisely, ELBO) of the third term in (32).

Continuous normalizing flows [CRBD18] and ODEs

Parametrize temporary transport map by time t and induce particles ODEs
Ẏt = ft(Yt). Tt(Y0) = Y0 +

∫ t
0 fs(Ys)ds. The log-likelihood evolves by

d log pt(y)

dt
= −Tr

(
∂ft
∂y

)
. (33)
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More SDE approaxches [SSDK+20]

A SDE or Itô process describes an evolution of random variable Xt ∈ Rd as

dXt = b(Xt , t)dt + σ(Xt , t)dWt (34)

where b(x, t) ∈ Rd and σ(x, t) ∈ Rd×d .
If Xt is the solution of (34), its density p(x, t) satisfies the forward and
backward evolutions [Øks14]:

∂tp(x, t) = −∇x · (b(x, t)p(x, t)) +
1

2

∑
i ,j

∂ij(σ
T
i σj(x, t)p(x, t)) (35)

−∂tp(x, t) = b(x, t)∇x · p(x, t) +
1

2

∑
i ,j

σT
i σj(x, t)∂ijp(x, t) (36)

Idea: Handle the forward transition probability q(Xt |Xt−1) with (35) or
the backward transition probability q(Xt−1|Xt) with (36) to be normal.
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Common difficulties of these models: High dimensionality

Gradient signals are diluted due to various regularizations.
ex) Constraining ∥∇ϕ(x)∥ ≤ L leads to the average axis-wise velocity
component to be |[∇ϕ(x)]i | ≤ L√

d
. Slow.

L = O(
√
d)? It might reduce the stability of the method.

Target distribution is supported in low dimensional manifolds -
approximation where Q(x) ≈ 0 is inaccurate.

⇒ Relieve the problem by projecting to a latent space :

Consider a low dimensional manifold S ⊂ supp(Q) in Rd and for
d ′ < d a projection map Ed′ : Rd → Rd′

which is invertible in S .
Call Ed′(Rd) be a latent space for d ′ dimensional features.
A systematic approach to obtain feature vectors?
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Self-attention [VSP+17, TJ19, LEE21]

X,Y: input and output random variables in Rd . For simplicity, assume
independency among Xi ’s and Yi ’s. Factorization of the joint distribution
using conditional independence among random variables:

p(x1:d , y1:d) =
d∏

i=1

p(xi )p(yi |x1:i−1) =
d∏

i=1

p(xi )p(yi |Pa(yi )) (37)

Figure: Bipartite graph of
input entries and output
entries.
(a) Chain rule.
(b) CNN.
(c) Self-attention in trans-
former.
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Any questions OR Clarification
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