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PDEs and Neural Network Approaches
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A PDE and Related Problems

A diffusion-reaction system with a source term u(x) is given as

∂s

∂t
= D

∂2s

∂x2
+ ks2 + u(x), x ∈ [0, 1], t ∈ [0, 1] (1)

with zero initial boundary conditions, where D is the diffusion coefficient,
and k is the reaction rate.
We can consider

Forward problem

Inverse problem (given observations of s(t, x) at some points, find the
parameters D, k)

Inferring the equation given observations of s(t, x) only.
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Conventional Numerical Solvers

Conventional numerical solvers for PDEs: FDM, FEM, FVM generally
obtain solutions by discretization of domain/equation.

1 There is a tradeoff between resolution and accuracy.
Computationally costly to obtain more accurate solution.

2 There is no universal method that works for any equations.
e.g. CFL condition of methods for hyperbolic PDEs

3 The solution is a finite dimensional approximation.
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Neural Network Approaches

Solving PDEs as well as ODEs using Neural Network is based on the
theorem on 2 layer Neural Network.

Theorem (Universal Approximation Theorem (Cybenko, 1989))

σ is a sigmoidal function, Id ⊂ Rd is the d-dimensional unit cube [0, 1]d ,
and C (Id) is the space of continuous functions on Id .
Given f ∈ C (Id) and ϵ > 0, there are n ∈ N, m points x1, · · · , xm ∈ Id ,
and constants ci , θi , ξij ∈ R, i = 1, · · · , n, j = 1, · · ·m, such that∣∣∣∣∣∣f (x)−

n∑
i=1

ciσ

 m∑
j=1

ξij f (xj) + θi

∣∣∣∣∣∣ < ϵ (2)

holds for all x ∈ Id .

People empirically extrapolate this result on Deep Neural Networks.
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Numerical Solvers vs. Neural Network Approaches

The distinguished attributes between conventional numerical solvers and
Neural Network approaches are summarized as below.

Conventional Solvers Attributes NNs

Linear
Approximation

Derivatives
Automatic

Differentiation

Mostly grid points Input Grid-free

Approximation
on grid points

Output
Solution function
of an instance

Rule-based Approach Data-driven

Long Time to evaluate Short
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Physics Informed Neural Networks

Physics Informed Neural Networks(PINN) (Karniadakis group[1]) is one of
the significant Neural Network approaches to solve differential equations
by directly imposing the DE, ICs and BCs to the Loss function.

Applications of PINNs are :

inverse problems

intero-differential equations

fractional differential equations

stochastic differential equations
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Learning Operators

* Still problematic!

one instant solution function for a DE with a fixed parameter set

finite dimensional approximation of f at {x1, x2, · · · , xm}
Consider learning an operator G : u(x) 7→ s(x), x ∈ [a, b].

Notations

V ⊂ C (X ) where X Banach, and W ⊂ C (Rd) are some compact
function spaces.

G : V → W an operator that maps a function u to a function G (u).

For any point y in the domain of G (u), G (u)(y) ∈ R.
An input function u is configured by its evaluations at finitely many
sensors {x1, x2, · · · , xm}.
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Examples of the Operator G

Operator G : function (∞-dim) 7−→ function (∞-dim)

derivative: u(x) 7→ u′(x)

integral: u(x) 7→
∫
K (y , x)u(y)dy

dynamical system:
an external force term to the position of a gravity pendulum
ds1
dt = s2

ds2
dt = −k sin s1 + u(t)

PDE:
a source term u(x) to the solution s(t, x)
∂s
∂t = D ∂2s

∂x2
+ ks2 + u(x), x ∈ [0, 1], t ∈ [0, 1]

Let’s see a concrete form of G in our interested case!
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Operator G for Dynamical systems

WANT: to predict s(x) over the whole domain [a, b] for any u(x).
A dynamical system on s : [a, b] → Rk ,

ds

dx
= g(s(x), u(x), x), x ∈ [a, b] (3)

with s(a) = s0, where u ∈ V is a compact subset of C [a, b].

What NN learns

G : the operator mapping the input u to the output s i.e., Gu satisfies

(Gu)(x) = s0 +

∫ x

a
g((Gu)(t), u(t), t)dt. (4)

Conceptualize G for PDE problems analogously.
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Universal Approximation Theorem for Operator

Theorem (Chen & Chen, 1995)

σ is a continuous non-plynomial function, X is a Banach space,
K1 ⊂ X ,K2 ⊂ Rd are compact sets in X and Rd , respectively. V is a
compact set in C (K1), G is a nonlinear continuous operator, which maps
V into C (K2). Then for any ϵ > 0, there are positive integers p, n,m,
constants cki , ξ

k
ij , θ

k
i , ζk ∈ R, wk ∈ Rd , xj ∈ K1, k = 1, · · · , p,

i = 1, · · · , n, j = 1, · · ·m, such that∣∣∣∣∣∣G (u)(y)−
p∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ(wk · y + ζk)

∣∣∣∣∣∣ < ϵ (5)

holds for all u ∈ V and y ∈ K2.
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DeepONet and its Consequences
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DeepONet Architecture

Karniadakis group[2] suggested DeepONet consisting of Branch Nets. and
Trunk Nets., which

embodies knowledge from Universal Theorem of Operator into Nets.

improves generalization error (etotal = eapproximate + eoptimize + egeneralize).

Figure: Branch and Trunk Networks in DeepONet

G (u)(y) ≈
∑p

k=1 bktk can be viewed that a Trunk Network with each
weight in the last layer is parametrized by another Branch Network
(instead of the classical single parameter).
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To further improve the generalization error, discriminated Stacked and
Unstacked architectures on the Branch Networks

and added a bias term which was not included in the Universal Theorem
of Operator : G (u)(y) ≈

∑p
k=1 bktk + b0
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Input Data Generations

G : u (function) 7→ G (u) ∈ C (Rd)

DeepONet requires u configured by m sensors (i.e. [u(x1), · · · , u(xm)])
and y ∈ Rd as inputs.

Here, how to configure u with finitely many sensors is an issue!
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Input Function Space V

Gaussian Random Field (GRF)

u ∼ G(0,Kl(x , y)) (6)

where the covariance kernel Kl(x , y) = exp(−∥x − y∥2/2l2) is a radial
basis function (RBF) kernel with a length-scale parameter l > 0.
* l determines the smoothness of the sampled function in the sense that

sup
u∈V

max
x∈[a,b]

|u(x)− um(x)| ∼
1

m2l2
. (7)

* An error analysis on the number of sensors m is done within this
function space.
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Training Data Generation Process

1 Sample u from the function space.

2 Solve the ODE system by Runge-Kutta or PDEs by a second-order
FDM to obtain a reference solution.

3 Pick P points from the reference solution.
e.g.) Data Generations for PDEs

4 A data point is a triplet (u, y ,G (u)(y)) and now train a DeepONet.
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Numerical Experiments on the DeepONet Paper

* Example codes in Python-DeepXDE are available at Github:
https://github.com/lululxvi/deeponet

Main numerical results

significant generalization ability shown for a 1D linear ODE case

effects of the number of sensors m for a dynamical system

effects of #(training data points) = #u × P with different pairs for a
PDE
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1D Linear ODE

ds(x)

dx
= u(x), x ∈ [0, 1] (8)

with s(0) = 0.

G : u(x) 7→ s(x) =

∫ x

0
u(t)dt (9)

with 100 sensors, 1× 10, 000 G (u)(y) points, after 50,000 iterations.

FFN (Left): standard neural
network w/o PINN

Unstacked w/ bias
architecture got the best
generalization property.
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Gravity Pendulum with an External Force

ds1
dt

= s2
ds2
dt

= −k sin s1 + u(t) (10)

with s(0) = 0. Trained with different number of sensors m, after 100,000
iterations. m ∝

√
T , m ∝ l−1.

FFN (Left): standard neural
network w/o PINN

Unstacked w/ bias
architecture got the best
generalization property.
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Diffusion-reaction system with a source term u(x)

∂s

∂t
= D

∂2s

∂x2
+ ks2 + u(x), x ∈ [0, 1], t ∈ [0, 1] (11)

with zero initial boundary conditions. G : u(x) 7→ s(t, x) trained with 100
sensors, after 500,000 iterations.

Red: The polynomial rates of
convergence versus the values of P

Blue: The polynomial rates of
convergence versus the number of u
samples
More u samples induces faster
convergence until it saturates.

The rate of convergence w.r.t. P
depends on the number of u
samples, and vice versa.
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Feed-forward Network architecture is used for the construction of Branch
Networks and Trunk networks in DeepONet, and each FFN’s depth and
width for the examples are given as the table:

Eq. type Trunk Deptrunk Widtrunk Depbranch Widbranch

1D L-ODE
Stacked/
Unstacked

3
40

2
401D NL-ODE

Gravity
pendulum

Unstacked

PDE Unstacked 100 100

Table: DeepONet size
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Follow-up Studies

Fourier Neural Operators (Zongyi Li et al.[3]): to improve
efficiency of computing integral operators

Meta-learning: to systemically choose NN training parameters and
architectures

Error Estimate analysis: to estimate the convergence of error with
respect to model parameters
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