TRAINING A 2 LAYER NEURAL NETWORK USING SVD-GENERATED WEIGHTS
Hyemin Gu

Department of Mathematics Ewha Womans University

OBJECTIVES

To train a 2 layered neural network for MNIST
handwritten digit classification in a low cost:

» by adjusting the scales of weights and

» by initializing the input layer’s weight

dependent to the given data using SVD.

PRELIMINARIES

MNIST dataset is composed of 60,000 training sam-
ples and 10,000 test samples of gray-scale handwrit-
ten digit images from 0 to 9 and their labels. An
original image is of 28 X 28 where each pixel value
varies from 0 to 255. When feeding the images as an
input of the feed-forward neural network, we vector-
ize each image, center it at 0, and [o-normalize by 1.
Then we concatenate all the vectors of training/test

samples in a row and define it as Input matrix
X9 So we have X, . of 784 x 60,000 and X, ,

trawn
of 784 x 10, 000. Using one-hot encoding, we define
a Target matrix Y of 10 X samplesize where

Yi; = I{label; =i — 1}.

label 0 label 1 label 2 label 3

/131y

label 6 label 7 label 8 label 9

S0R0R

Figure 1: MNIST digit images and a target

=
g

= O 000 O OO OO0

—
\“___

The purpose of our 2 layered neural network is to
find a set of weights and biases (W' bl|,

where hgypy (X Y) approximates Y with the least
CITOL.

From layer [= 1 to 2, we calculate
A=W+ b
1 1
.CEZ _ f(Zl) _ - ()
1 + exp(—2')
f is an (sigmoid) activation function hav-

ing the property f/ = f % (1 — f).
h{ij}l:LQ(l’O) - xQ'

Then we put

To estimate the error between x* and vy, we define
a loss function L called Cross Entropy(CE).

Given a pair (2", y), L({W' 0'},=;12) is defined as
+ (1—yi)log (1 —a7)]. (2)

— El (yz log z;
We train {Wl , bl} by Gradient descent method.

/=12

Using back propagation algorithm, a%l. and
5,%;. are formulated as below:
an LW,V) = ngfl b forl=2,1, 3
abl (‘{Wl bl}l_) gZLZg Cfor [=2, 1.

oL |7l —y; it [= 2,

0z | W O, foxlel(l—af) L ifl=1.

INSPIRATION

We initialize VVZZ] to be mean 0, and sharing the con-
stant variance among layers [= 1,2.[1] And let the
bias terms b;. = 0, and b} = —%zj Wlfj ~ (. Then
we can estimate the expectation of the norm
square of z'.

olf W' and 2! are independent,

Bl =sWear W BT, ©
@if W't and ! are the same,
= sVar W ()

When we fix the Frobenius norm of weights while
training-(*), 1 and 2 are the minimum and maxi-
mum quantity of ||z!]|°, respectively. So, we set the
dependency ratio between W' and z' as

2
|2 |one = $1 W[5, /(s081)
1112 y (7)
sos1 [|W [k /(S081)

Note that we use Var [W1 = “W1||1%r0/(8081), if
E W1 =0.
By experiments, we have seen E [W1] = 0 and this

dep =

dependent ratio getting increased while training. By
(*), this implies W1 is getting similar to 2" while
traming.

Then what if we put the input layer’s weight much
close to our given training data? In this idea, we

put W' using the principal components from SVD

on the training matrix.

METHODS

Let X" be the whole training input matrix. By

SVD., XU = UXV?! where U, X are of 784 x 784,
and VT is of 784 x 60,000. Choose s1 < r =
rank (X"). Let I and ¥7! be s x 784 matrices

only containing the diagonal elements 1 and O'm ,

respectively. And say Z! = W!'X". Then we can
think of 2 types of W' and their £ [HleQI

® An orthogonal matrix multiplied by d;
= d; x [UT, (8)

1 — 2.5 s1(1+784xdep)V ar[W1]
HZ HFro dl 1= 1022 cod = J ;L 07./60,000

® A scaled matrix multiplied by ds
— dg X i_lUT, (9)

Wl orth, whole

Wl ,scale, whole

2
HZl“Fro — d% * ST
. dy = 60,000 x (1 + 784 % dep)Var [W1].

Also, we can consider applying SVD on each label
subset. We call them as W he:cach

RESULTS

Experiments where s; = 100 and Var [W!] = 0.09.

0.08

0.07 |
0.06 | v &Mﬁwm

MﬁWW‘:""WmW iy n"” e «j
0.05 ,,@W

0.04 R
| MMM*MWWHJWMMWWMMFWM
0.03 H !

— W‘r,randum

0.02 | : yy orthwhole |
W‘t.cnrth.each

S Wt,scale,whde

0.01 |
Wt.scale.eac:h

D | | | 1
0 200 400 600 800 1000

Figure 2: Dependency change while training

Table 1: Performance of each initialization after 5 epochs

Weight Type Loss Train Accuracy Test Accuracy

Jy Lrandom 71 91 67 % 90.98 %
Jy/ Lorth, whole () g3 93 00 % 91.39 %
Jyborth,cach 59 94,67 % 93.03 %
[y Lscale, whole 70 93 00 % 90.90 %
Jy Lscale, each -y g9 94,00 % 92.73 %

CONCLUSION

In general, orthogonal matrix of each class showed
the best performance. There was no improvement of
scaling each row by singular values. But the perfor-
mance was better as the initial dependency of weight
matrix with input data gets bigger. By the way, the
computational cost of applying SVD on a m X n
matrix is O(m?n) floating-point operations (flops),
assuming that m < n. So, applying SVD on whole
data set has the same computational cost with ap-

plying SVD on 10 divided subsets.

FURTHER STUDIES

We can consider

» assuming the linearity of f near
O(x = f(2) ~ }Lz + %) And try to estimate the
expectation of the norm square of z! and so on,

« fixing W', and so train a NN without updating
W' and reduce computational cost.

REFERENCES

1] Xavier Glorot, Yoshua Bengio. Understanding
the difficulty of training deep feedforward
neural networks. Proceedings of the Thirteenth
International Conterence on Artificial
Intelligence and Statistics, PMLR 9:249-256, 2010.

2| Adam Gibson, Josh Patterson. Deep Learning :
A Practitioner’s Approach. O'Reilly Media,
2017.

3] Unsupervised Feature Learning and Deep
Learning Tutorial

http://ufldl.stanford.edu/tutorial /

nicolegu6616@gmail.com

E-mail :

\ OI Q_I-OZI II-EH (o] 271

EWHA WOMANS UNIVERSITY

