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Objectives
To train a 2 layered neural network for MNIST
handwritten digit classification in a low cost:
•by adjusting the scales of weights and
•by initializing the input layer’s weight
dependent to the given data using SVD.

Preliminaries
MNIST dataset is composed of 60,000 training sam-
ples and 10,000 test samples of gray-scale handwrit-
ten digit images from 0 to 9 and their labels. An
original image is of 28 × 28 where each pixel value
varies from 0 to 255. When feeding the images as an
input of the feed-forward neural network, we vector-
ize each image, center it at 0, and l2-normalize by 1.
Then we concatenate all the vectors of training/test
samples in a row and define it as Input matrix
X0. So we have X0

train of 784 × 60, 000 and X0
test

of 784× 10, 000. Using one-hot encoding, we define
a Target matrix Y of 10 × samplesize where
Yij = I{labelj = i− 1}.

Figure 1: MNIST digit images and a target

The purpose of our 2 layered neural network is to
find a set of weights and biases

Wl,bll=1,2
where h{W,b}l=1,2

(X0) approximates Y with the least
error.
From layer l = 1 to 2, we calculate

zl = W l ∗ xl−1 + bl,

xl = f (zl) = 1
1 + exp(−zl)

.
(1)

f is an (sigmoid) activation function hav-
ing the property f ′ = f ∗ (1 − f ). Then we put
h{W,b}l=1,2

(x0) = x2.

To estimate the error between x2 and y, we define
a loss function L called Cross Entropy(CE).
Given a pair (x0, y), L

{W l, bl}l=1,2
 is defined as

− s2∑
i=1

yi log x2
i + (1− yi) log (1− x2

i)
 . (2)

We train
W l, bl

l=1,2 by Gradient descent method.
Using back propagation algorithm, ∂L

∂W l
ij
and

∂L
∂W l

ij
are formulated as below:
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Inspiration
We initializeW l

ij to be mean 0, and sharing the con-
stant variance among layers l = 1, 2.[1] And let the
bias terms b1

k = 0, and b2
k = −1

2
∑
jW

2
kj ≈ 0. Then

we can estimate the expectation of the norm
square of z1.
1 If W l+1 and xl are independent,
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2 if W l+1 and xl are the same,
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When we fix the Frobenius norm of weights while
training-(*), 1 and 2 are the minimum and maxi-
mum quantity of ‖z1‖2, respectively. So, we set the
dependency ratio between W 1 and x0 as

dep = ‖z
1‖2

obs − s1 ‖W 1‖2
Fro /(s0s1)

s0s1 ‖W 1‖2
Fro /(s0s1)

. (7)

Note that we use V ar [W 1] = ‖W 1‖2
Fro /(s0s1), if

E [W 1] = 0.
By experiments, we have seen E [W 1] = 0 and this
dependent ratio getting increased while training. By
(*), this implies W 1 is getting similar to x0 while
training.
Then what if we put the input layer’s weight much
close to our given training data? In this idea, we
put W 1 using the principal components from SVD
on the training matrix.

Methods
Let X0 be the whole training input matrix. By
SVD, X0 = UΣV T where U , Σ are of 784× 784,
and V T is of 784 × 60, 000. Choose s1 ≤ r =
rank (X0). Let Î and Σ̂−1 be s1 × 784 matrices
only containing the diagonal elements 1 and σ−1

ii ,
respectively. And say Z1 = W 1X0. Then we can
think of 2 types of W 1 and their E

‖z1‖2.
1 An orthogonal matrix multiplied by d1

W 1,orth, whole = d1 ∗ ÎUT , (8)
‖Z1‖2

Fro = d2
1

∑s1
i=1 σ

2
ii. ∴ d1 =

√√√√√√s1(1+784∗dep)V ar[W 1]∑s1
i=1 σ

2
ii/60,000 .

2 A scaled matrix multiplied by d2

W 1,scale, whole = d2 ∗ Σ̂−1UT , (9)
‖Z1‖2

Fro = d2
2 ∗ s1.

∴ d2 =
√√√√60, 000 ∗ (1 + 784 ∗ dep)V ar [W 1].

Also, we can consider applying SVD on each label
subset. We call them as W 1,•,each.

Results
Experiments where s1 = 100 and V ar [W 1] = 0.09.

Figure 2: Dependency change while training

Table 1: Performance of each initialization after 5 epochs

Weight Type Loss Train Accuracy Test Accuracy
W 1,random 0.71 91.67 % 90.98 %
W 1,orth, whole 0.63 93.00 % 91.39 %
W 1,orth, each 0.59 94.67 % 93.03 %
W 1,scale, whole 0.70 93.00 % 90.90 %
W 1,scale, each 0.62 94.00 % 92.73 %

Conclusion
In general, orthogonal matrix of each class showed
the best performance. There was no improvement of
scaling each row by singular values. But the perfor-
mance was better as the initial dependency of weight
matrix with input data gets bigger. By the way, the
computational cost of applying SVD on a m × n
matrix is O(m2n) floating-point operations (flops),
assuming that m ≤ n. So, applying SVD on whole
data set has the same computational cost with ap-
plying SVD on 10 divided subsets.

Further studies
We can consider
• assuming the linearity of f near
0(x = f (z) ≈ 1

4z + 1
2). And try to estimate the

expectation of the norm square of x1 and so on,
•fixing W 1, and so train a NN without updating
W 1 and reduce computational cost.
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