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(7, Lip;)-divergence

B The f-divergence between two probability measures P and @ in-
duced by a convex function f satisfying f(1) = 0 is defined by

Df(P|Q) := Eqlf(dP/dQ)]

— KLD: f = xlog x, x?-divergence: f = (x — 1)?, Hellinger distance: f =
(v/x — 1)?, total variation: f = %|x — 14, ..

B A variational representation of the f-divergence via the Legendre
transform

Di(P|Q) = sup { j

peEM(£2)

B Integral probability metrics (IPMs) maximize the differences of the
respective expected values over a function space, [

W' (Q, P) :=sup { }

pel

— 1-Wasserstein metric: [ = Lip1(S), MMD distance: [ = RKHS unit ball, ...

DLipL(PH Q) = SuquELipL,l/ER{ }

Lipschitz regularized gradient flows

B F : P — R minimizing flow

SF(P
atPt—V' Ptv (t) :O,PO:P,POO:Q
0 P;
and corresponding particle dynamics % — —V(S];/(D’jt) (Y:).
= F = D¢, (+||Q) with fxq. = x log x : Fokker-Planck equation
- F = D¢ (-]|Q) with f, = ax(z:ll) : Weighted porous media equation

B Lipschitz regularized gradient flows F = D#"”L(-H Q) in variational

SF(P) _ e

representation: 5P,

3tPt—V(Ptv¢;’;):0,P0:P,POO:Q

with particle ODE system % = —Voi(Yy).

B Mobility () = 22(Z, Tg—YZ)(Zt) givenby AEY = Do &(Y) =
D(Z) modifies the dynamics to <7t = —u:(Y:) Vi (Ye).

(7, Lip;)-Generative particles algorithm

B Approximate distributions with /N particles
~ 1 N ~ 1 N
- P~ Py=+ Zizl 5YO(,-) and Q = Qn = 7 Zizl 0 (i)

B Parametrize the discriminator ¢ using a Neural Network and maxi-
mize the variational representation

B Lipschitz continuity on ¢: Spectral Normalization (Miyato et. al)
(hard constraint)

m V¢(Y;:): automatic differentiation of NN

B Solve the ODE with an explicit scheme

Yt—l—l = Y — Atv¢( Yt)

Latent generative particles

B Pretrain an Auto-Encoder(AE) ) = D o £()) = D(Z) on target
samples XY where the latent space Z has a reduced dimension.

B Run GPA in the latent space

- YOZ: Initial particles sampled in the latent space

- X% = S(Xy): Target samples applied to the encoder £

B After the GPA, reconstruct the particle Y# using the decoder D.

B The convergence in the original space is guaranteed by the conver-
gence in the latent space (Data-Processing Inequality).

raDL
D (DxP?||QY) < D, (P?||£4 Q%)

Latent GPA

Learning heavy-tailed data with (f,, Lip;)-GPA
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Learning Student —t(0.5) from N((10, 10), /) by Lipschitz regularized GPA
with different f. Blue: f, , Green: f, with « = 10.

Digit-conditioned generation of (fi, Lip1)-GPA (left), (fk., Lip1)-GAN
(center) and WGAN-GP (right) from 200 MNIST samples.

Merging Gene expression data in a latent space
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Latent dimension = 20 (Left), Original dimension = 54, 675 (Right)
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