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(f , LipL)-divergence
� The f -divergence between two probability measures P and Q in-

duced by a convex function f satisfying f (1) = 0 is defined by

Df (P‖Q) := EQ[f (dP/dQ)]

– KLD: f = x log x , χ2-divergence: f = (x − 1)2, Hellinger distance: f =
(
√

x − 1)2, total variation: f = 1
2 |x − 1|, ...

� A variational representation of the f -divergence via the Legendre

transform

Df (P‖Q) = sup
φ∈Mb(Ω)

{
EP [φ] − EQ[f ∗(φ)]

}
� Integral probability metrics (IPMs) maximize the differences of the

respective expected values over a function space, Γ

W Γ(Q, P) := sup
φ∈Γ

{
EP [φ] − EQ[φ]

}
– 1-Wasserstein metric: Γ = Lip1(S), MMD distance: Γ = RKHS unit ball, ...

DLipL
f (P‖Q) := supφ∈LipL,ν∈R {EP [φ − ν] − EQ[f ∗(φ − ν)]}

Lipschitz regularized gradient flows
� F : P → Rminimizing flow

∂tPt − ∇ ·
(

Pt∇
δF(Pt)

δPt

)
= 0, P0 = P, P∞ = Q

and corresponding particle dynamics dYt
dt = −∇ δF(Pt )

δPt
(Yt).

– F = DfKL (·‖Q) with fKL = x log x : Fokker-Planck equation

– F = Dfα (·‖Q) with fα = xα−1
α(α−1) : Weighted porous media equation

� Lipschitz regularized gradient flows F = DLipL
f (·‖Q) in variational

representation:
δF(Pt )

δPt
= φ∗

t

∂tPt − ∇ · (Pt∇φ∗
t ) = 0, P0 = P, P∞ = Q

with particle ODE system dYt
dt = −∇φ∗

t (Yt).

� Mobility µt(Yt) = ∂D
∂Z (Zt)

T ∂D
∂Z (Zt) given by AE Y = D ◦ E(Y) =

D(Z) modifies the dynamics to dYt
dt = −µt(Yt)∇φ∗

t (Yt).

(f , LipL)-Generative particles algorithm
� Approximate distributions with N particles

– P ≈ P̂N = 1
N

∑N
i=1 δ

Y (i)
0

and Q ≈ Q̂N = 1
N

∑N
i=1 δX (i)

� Parametrize the discriminator φ using a Neural Network and maxi-

mize the variational representation

N−1
N∑

i=1
φ(Y (i)

n ; W ) −

{
N−1

N∑
i=1

f ∗
(

φ(X (i)
n ; W ) − ν

)
+ ν

}

� Lipschitz continuity on φ: Spectral Normalization (Miyato et. al)

(hard constraint)

� ∇φ(Yt): automatic differentiation of NN

� Solve the ODE with an explicit scheme

Yt+1 = Yt − ∆t∇φ(Yt)

Latent generative particles
� Pretrain an Auto-Encoder(AE) Y = D ◦ E(Y) = D(Z) on target

samples XY where the latent space Z has a reduced dimension.

� Run GPA in the latent space

– Y Z
0 : Initial particles sampled in the latent space

– XZ = E(XY ): Target samples applied to the encoder E

� After the GPA, reconstruct the particle Y Z
T using the decoder D.

� The convergence in the original space is guaranteed by the conver-

gence in the latent space (Data-Processing Inequality).

DΓL
f (D#PZ ||QY) ≤ DΓaDL

f (PZ ||E#QY)

Learning heavy-tailed data with (fα, Lip1)-GPA

LearningStudent−t(0.5) fromN((10, 10), I) by Lipschitz regularizedGPA
with different f . Blue: fKL, Orange: fα withα = 2, Green: fα withα = 10.

Learning MNIST with a small number of data

Digit-conditioned generation of (fKL, Lip1)-GPA (left), (fKL, Lip1)-GAN
(center) andWGAN-GP (right) from 200 MNIST samples.

Merging Gene expression data in a latent space

Latent dimension = 20 (Left), Original dimension = 54, 675 (Right)
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