Lipschitz Regularized Gradient Flows and Latent Generative Particles

Hyemin Gu¹, Panagiota Birmpa², Yannis Pantazis³, Markos A. Katsoulakis¹ and Luc Rey-Bellet¹ ¹University of Massachusetts Amherst, ²Heriot-Watt University, ³Foundation for Research & Technology - Hellas

(f, Lip_L)-divergence

The f-divergence between two probability measures P and Q induced by a convex function f satisfying f(1) = 0 is defined by

$$D_f(P||Q) := E_Q[f(dP/dQ)]$$

- KLD: $f = x \log x$, χ^2 -divergence: $f = (x 1)^2$, Hellinger distance: $f = (x 1)^2$ $(\sqrt{x}-1)^2$, total variation: $f = \frac{1}{2}|x-1|$, ...
- A variational representation of the *f*-divergence via the Legendre transform

$$D_f(P \| Q) = \sup_{\phi \in \mathcal{M}_b(\Omega)} \left\{ \frac{E_P[\phi] - E_Q[f^*(\phi)]}{\Phi \in \mathcal{M}_b(\Omega)} \right\}$$

Integral probability metrics (IPMs) maximize the differences of the respective expected values over a function space, Γ

$$W^{\Gamma}(Q, P) := \sup_{\phi \in \Gamma} \left\{ \frac{E_{P}[\phi] - E_{Q}[\phi]}{\phi} \right\}$$

- 1-Wasserstein metric: $\Gamma = Lip_1(S)$, MMD distance: $\Gamma = RKHS$ unit ball, ...

 $D_{f}^{Lip_{L}}(P \| Q) := \sup_{\phi \in Lip_{L}, \nu \in \mathbb{R}} \{ E_{P}[\phi - \nu] - E_{Q}[f^{*}(\phi - \nu)] \}$

Lipschitz regularized gradient flows

 $\mathcal{F}: \mathcal{P} \to \mathbb{R}$ minimizing flow

$$\partial_t P_t - \nabla \cdot \left(P_t \nabla \frac{\delta \mathcal{F}(P_t)}{\delta P_t} \right) = 0, P_0 = P, P_\infty$$

and corresponding particle dynamics $\frac{dY_t}{dt} = -\nabla \frac{\delta \mathcal{F}(P_t)}{\delta P_t}(Y_t)$.

- $\mathcal{F} = D_{f_{\mathsf{KI}}}(\cdot || Q)$ with $f_{\mathsf{KL}} = x \log x$: Fokker-Planck equation - $\mathcal{F} = D_{f_{\alpha}}(\cdot ||Q)$ with $f_{\alpha} = \frac{x^{\alpha} - 1}{\alpha(\alpha - 1)}$: Weighted porous media equation

Lipschitz regularized gradient flows $\mathcal{F} = D_f^{Lip_L}(\cdot ||Q)$ in variational representation: $\frac{\delta \mathcal{F}(P_t)}{\delta P_t} = \phi_t^*$

$$\partial_t P_t - \nabla \cdot (P_t \nabla \phi_t^*) = 0, P_0 = P, P_\infty =$$

with particle ODE system $\frac{dY_t}{dt} = -\nabla \phi_t^*(Y_t)$.

• Mobility $\mu_t(Y_t) = \frac{\partial \mathcal{D}}{\partial Z}(Z_t)^T \frac{\partial \mathcal{D}}{\partial Z}(Z_t)$ given by AE $\mathcal{Y} = \mathcal{D} \circ \mathcal{E}(\mathcal{Y}) = \mathcal{D}$ $\mathcal{D}(\mathcal{Z})$ modifies the dynamics to $\frac{dY_t}{dt} = -\mu_t(Y_t)\nabla\phi_t^*(Y_t)$.

(f, Lip_L)-Generative particles algorithm

- Q = Q

- Approximate distributions with N particles
 - $P \approx \widehat{P_N} = \frac{1}{N} \sum_{i=1}^N \delta_{Y_0^{(i)}}$ and $Q \approx \widehat{Q_N} = \frac{1}{N} \sum_{i=1}^N \delta_{X^{(i)}}$
- Parametrize the discriminator ϕ using a **Neural Network** and maximize the variational representation

$$N^{-1}\sum_{i=1}^{N}\phi(Y_{n}^{(i)};W) - \left\{N^{-1}\sum_{i=1}^{N}f^{*}\left(\phi(X_{n}^{(i)};W) - \nu\right) + \nu\right\}$$

- \blacksquare Lipschitz continuity on ϕ : Spectral Normalization (Miyato et. al) (hard constraint)
- $\nabla \phi(Y_t)$: automatic differentiation of NN
- Solve the ODE with an explicit scheme

 $Y_{t+1} = Y_t - \Delta t \nabla \phi(Y_t)$

Latent generative particles

- **Pretrain an Auto-Encoder(AE)** $\mathcal{Y} = \mathcal{D} \circ \mathcal{E}(\mathcal{Y}) = \mathcal{D}(\mathcal{Z})$ on target samples $X^{\mathcal{Y}}$ where the latent space \mathcal{Z} has a reduced dimension.
- Run GPA in the latent space
 - $Y_0^{\mathcal{Z}}$: Initial particles sampled in the latent space - $X^{\mathcal{Z}} = \mathcal{E}(X^{\mathcal{Y}})$: Target samples applied to the encoder \mathcal{E}
- After the GPA, reconstruct the particle $Y_T^{\mathcal{Z}}$ using the decoder \mathcal{D} .
- The convergence in the original space is guaranteed by the convergence in the latent space (Data-Processing Inequality).

 $D_f^{\Gamma_L}(\mathcal{D}_{\#}P^{\mathcal{Z}}||Q^{\mathcal{Y}}) \leq D_f^{\Gamma_{a_{\mathcal{D}}}}$

$$P^{L}(P^{\mathcal{Z}}||\mathcal{E}_{\#}Q^{\mathcal{Y}})$$

Learning heavy-tailed data with (f_{α}, Lip_1) -GPA

Learning Student - t(0.5) from N((10, 10), I) by Lipschitz regularized GPA with different f. Blue: f_{KL} , Orange: f_{α} with $\alpha = 2$, Green: f_{α} with $\alpha = 10$.

Learning MNIST with a small number of data

(center) and WGAN-GP (right) from 200 MNIST samples.

Merging Gene expression data in a latent space

Acknowledgments

The research was partially supported by AFOSR FA9550-21-1-0354, NSF DMS-2008970 and TRIPODS CISE-1934846.

Digit-conditioned generation of (f_{KL}, Lip_1) -GPA (left), (f_{KL}, Lip_1) -GAN

Latent dimension = 20 (Left), Original dimension = 54,675 (Right)

