Lipschitz Regularized Gradient Flows and Latent Generative Particles

Hyemin Gu¹, Panagiota Birmpa², Yannis Pantazis³, Markos A. Katsoulakis¹ and Luc Rey-Bellet¹ 1 *University of Massachusetts Amherst,* ² *Heriot-Watt University,* 3 *Foundation for Research & Technology - Hellas*

(f , Lip^L)-divergence

 \blacksquare The f-divergence between two probability measures P and Q induced by a convex function f satisfying $f(1) = 0$ is defined by

- \blacksquare KLD: $f = x \log x$, χ^2 -divergence: $f = (x 1)^2$, Hellinger distance: $f =$ $(\sqrt{x}-1)^2$, total variation: $f=\frac{1}{2}$ √ 2 $|x-1|, ...$
- \blacksquare A variational representation of the f-divergence via the Legendre transform

 \blacksquare Integral probability metrics (IPMs) maximize the differences of the respective expected values over a function space, Γ

$$
D_f(P||Q) := E_Q[f(dP/dQ)]
$$

D Lip^L $f_f^{\text{Lip}}(P\|Q) := \sup_{\phi\in \text{Lip}_L, \nu\in \mathbb{R}}\left\{E_P[\phi-\nu]-E_Q[f^*(\phi-\nu)]\right\}$

$$
D_f(P||Q) = \sup_{\phi \in \mathcal{M}_b(\Omega)} \{ E_P[\phi] - E_Q[f^*(\phi)] \}
$$

- $\mathcal{F} = D_{\mathsf{f}_{\mathsf{KL}}}(\cdot\|Q)$ with $\mathsf{f}_{\mathsf{KL}} = \mathsf{x}\log{\mathsf{x}}$: Fokker-Planck equation ${\cal F} = D_{f_{\alpha}}(\cdot \| Q)$ with $f_{\alpha} = \frac{x^{\alpha}-1}{\alpha(\alpha-1)}$: Weighted porous media equation
- \blacksquare Lipschitz regularized gradient flows $\mathcal{F} = D_f^{Lip_L}$ f representation: $\frac{\delta \mathcal{F}(P_t)}{\delta P_t}$ δP_t $= \phi_t^*$ t

$$
W^{\Gamma}(Q, P) := \sup_{\phi \in \Gamma} \left\{ E_P[\phi] - E_Q[\phi] \right\}
$$

− 1-Wasserstein metric: $Γ = Lip_1(S)$, MMD distance: $Γ = RKHS$ unit ball, ...

Lipschitz regularized gradient flows

 \blacksquare $\mathcal{F}: \mathcal{P} \to \mathbb{R}$ minimizing flow

(f, Lip_L)-Generative particles algorithm \blacksquare Approximate distributions with N particles $P\approx\widehat{P_{I}}$ $\hat{N}_N = \frac{1}{N}$ $\frac{1}{N}$ $\sum_{i=1}^{N}$ $i=1$ *δ* Y (i) 0 and $Q\approx \widehat{Q_{\mathsf{I}}}$ $\bar{N}_N = \frac{1}{N}$ $\frac{1}{N}$ $\sum_{i=1}^{N}$ $i=1$ *δ* $X^{(i)}$ Parametrize the discriminator *φ* using a **Neural Network** and maximize the variational representation N^{-1} N $i=1$ $\phi(Y_n^{(i)})$ $\binom{n}{n}$; W) — $\sqrt{ }$ N^{-1} N $i=1$ $f^*\n\left($ *φ*(X (i) n ; W) $-\nu$ \setminus + *ν*)

- **E** Lipschitz continuity on ϕ : Spectral Normalization (Miyato et. al) (hard constraint)
- $\blacksquare\ \nabla\phi(\mathsf{Y}_t)$: automatic differentiation of NN
- Solve the ODE with an explicit scheme

 $Y_{t+1} = Y_t - \Delta t \nabla \phi(Y_t)$

$$
\partial_t P_t - \nabla \cdot \left(P_t \nabla \frac{\delta \mathcal{F}(P_t)}{\delta P_t} \right) = 0, P_0 = P, P_{\infty} = Q
$$

and corresponding particle dynamics $\frac{dY_t}{dt} = -\nabla \frac{\delta \mathcal{F}(P_t)}{\delta P_t}$

$$
^{\perp}(\mathsf{Y}_{t}).
$$

 $(\cdot \| Q)$ in variational

$$
\overline{\pmb{Q}}
$$

- Pretrain an Auto-Encoder(AE) $\mathcal{Y} = \mathcal{D} \circ \mathcal{E}(\mathcal{Y}) = \mathcal{D}(\mathcal{Z})$ on target samples $X^{\mathcal{Y}}$ where the latent space \mathcal{Z} has a reduced dimension.
- **Run GPA in the latent space**
	- $Y_0^{\mathcal{Z}}$: Initial particles sampled in the latent space $\mathcal{X}^{\mathcal{Z}} = \mathcal{E}(\mathcal{X}^{\mathcal{Y}})$: Target samples applied to the encoder \mathcal{E}
- **A** After the GPA, reconstruct the particle $Y^{\mathcal{Z}}_T$
- \blacksquare The convergence in the original space is guaranteed by the convergence in the latent space (Data-Processing Inequality).

$$
\partial_t P_t - \nabla \cdot (P_t \nabla \phi_t^*) = 0, P_0 = P, P_{\infty} = Q
$$

with particle ODE system $\frac{dY_t}{dt} = -\nabla \phi_t^*$ $_t^*(Y_t)$.

■ Mobility $\mu_t(Y_t) = \frac{\partial \mathcal{D}}{\partial \overline{Z}}$ *∂∑* (Z_t) T *∂*D $\frac{\partial \mathcal{D}}{\partial \mathsf{Z}}(Z_t)$ given by AE $\mathcal{Y} = \mathcal{D} \circ \mathcal{E}(\mathcal{Y}) = 0$ $\mathcal{D}(\mathcal{Z})$ modifies the dynamics to $\frac{dY_t}{dt}=-\mu_t(Y_t)\nabla\phi_t^*$ $_t^*(Y_t$

$$
\mathcal{D}\circ\mathcal{E}(\mathcal{Y})=\\ Y_t).
$$

$$
\left\{\phi(X_n^{(i)};W)-\nu\right)+\nu\right\}
$$

 $\mathcal{T}^{\mathcal{Z}}_{\mathcal{T}}$ using the decoder $\mathcal{D}.$

Latent generative particles

$$
{}^{\circ ^{\scriptscriptstyle L}}(P^{\mathcal{Z}}||\mathcal{E}_{\#}Q^{\mathcal{Y}})
$$

Learning heavy-tailed data with (f_α , Lip₁)-GPA

Learning $Student-t(0.5)$ from $N((10, 10), I)$ by Lipschitz regularized GPA with different f. Blue: f_{KL} , Orange: f_{α} with $\alpha = 2$, Green: f_{α} with $\alpha = 10$.

Learning MNIST with a small number of data

(center) and **WGAN-GP (right)** from 200 MNIST samples.

Merging Gene expression data in a latent space

Latent dimension = 20 **(Left)**, **Original dimension** = 54, 675 **(Right)**

Acknowledgments

The research was partially supported by AFOSR FA9550-21-1-0354, NSF DMS-2008970 and TRIPODS CISE-1934846.

Digit-conditioned generation of (f_{KL}, Lip_1) -GPA (left), (f_{KL}, Lip_1) -GAN

