# Lorenz Equations for Atmospheric Convection Modeling 

Hyemin Gu
hgu@umass.edu
May 12, 2021

## Outline of the study

- Lorenz [1] introduced a dynamical system, the Lorenz equations in 1963 which describes the Earth's atmospheric convection.
- Using governing equations in 2D hydrodynamics, the steps of Lorenz are followed to derive the Lorenz equations from an abstract climate model.
- Then, Lorenz equations are analyzed by its equilibrium solutions and illustrated by individual examples.
- In the final discussion, application to the atmospheric convection modeling is stated and a different approach to handle the problem is proposed.


## The setting from Lorenz

## Rayleigh-Bernard flow

- The Earth's atmosphere is assumed an incompressible fluid situated between two horizontal planes in a uniform height. The fluid is heated from below and is cooled at the top, which results in a convective flow.
- It is considered a 2D flow, since the regular cell-like convection pattern can be captured in a 2D domain.


Figure: Heat conduction in an incompressible fluid between horizontal planes

## Basic notations

- $x$ and $y$ : the horizontal and vertical directions, respectively
- $y=0$ at the lower boundary and $y=\pi$ at the upper boundary
- $v=\left(v_{x}, v_{y}\right)$ : the velocity field
- $T(x, y, t)$ : the temperature at the position $(x, y)$ at time $t$
- The temperature at the lower boundary is $T_{0}>0$, and the temperature at the upper boundary is 0

$$
\begin{equation*}
T(y=0)=T_{0}>0, \quad T(y=\pi)=0 \tag{1}
\end{equation*}
$$

- q : the heat flux from the convection

$$
\begin{equation*}
\mathrm{q}=T \mathrm{v}-\kappa \nabla T \tag{2}
\end{equation*}
$$

where $\kappa>0$ is the thermal conductivity

## Constitutive equations for the temperature $T$

(Incompressible flow)

$$
\begin{equation*}
\nabla \cdot v=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0 \tag{3}
\end{equation*}
$$

(The continuity equation)

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\nabla \cdot \mathbf{q}=0 \tag{4}
\end{equation*}
$$

$\Rightarrow$ The heat equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=-v \cdot \nabla T+\kappa \nabla T \tag{5}
\end{equation*}
$$

$\Rightarrow$ Define deviation of temperature $\theta=T-T^{*}$ where $T^{*}$ is the solution of (5). $\theta$ satisfies the PDE

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=-v \cdot \nabla \theta+\frac{T_{0}}{\pi} v_{y}+\kappa \nabla \theta \tag{6}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\theta(y=0)=0, \theta(y=\pi)=0 \tag{7}
\end{equation*}
$$

## Constitutive equations for the velocity field $v$

(Equation of motion)

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho \mathrm{v})+\nabla \cdot(\rho \mathrm{vv})-\rho \mathrm{g}-\nabla \cdot \mathbb{T}=0 \tag{8}
\end{equation*}
$$

where $\mathbb{T}$ refers to the Cauchy stress tensor (Incompressible flow) (3) $\Rightarrow$

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho \mathrm{v})+\nabla \cdot(\rho \mathrm{vv})-\rho \mathrm{g}+\nabla p-\nabla \cdot \mathbb{S}=0 \tag{9}
\end{equation*}
$$

$\Rightarrow$ Define stream function $\psi$ so that $\Delta \psi=\zeta$; the vorticity. $\zeta$ satisfies the PDE

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=-v \cdot \nabla \zeta+c \frac{\partial \theta}{\partial x}+\nu \Delta \zeta \tag{10}
\end{equation*}
$$

where $c$ is a thermal expansion coefficient and the boundary conditions for $\psi$ are

$$
\begin{equation*}
\psi(y=0)=0, \quad \psi(y=\pi)=0 \tag{11}
\end{equation*}
$$

## Constitutive equations

For any scalar function $f:(x, y) \mapsto f(x, y)$,

$$
\begin{equation*}
v \cdot \nabla f=v_{x} f_{x}+v_{y} f_{y}=-\psi_{y} f_{x}+\psi_{x} f_{y}=\frac{\partial(\psi, f)}{\partial(x, y)} \tag{12}
\end{equation*}
$$

## A system of PDEs for $\theta$ and $\Delta \psi$

$$
\begin{align*}
\frac{\partial \Delta \psi}{\partial t} & =\nu \Delta^{2} \psi+c \frac{\partial \theta}{\partial x}-\frac{\partial(\psi, \Delta \psi)}{\partial(x, y)} \\
\frac{\partial \theta}{\partial t} & =\kappa \Delta \theta+\frac{T_{0}}{\pi} \frac{\partial \psi}{\partial x}-\frac{\partial(\psi, \theta)}{\partial(x, y)} \tag{13}
\end{align*}
$$

Substitute $\zeta=\Delta \psi$ from (10).

## Dynamical system

## Interpretation of $u(x, t)$ in the sense of dynamical systems

$u$ is a function of $t, u: t \mapsto u(t)$, and $u(x, t)$ is identified with the value of $u(t)$ at $x$,

$$
\begin{equation*}
u: t \mapsto u(t) ; \quad u(t): x \mapsto u(t)(x)=u(x, t) \tag{14}
\end{equation*}
$$

- Time is the "primary" variable and space is the "secondary" variable.
- $u(t)$ is a function of $x$, which belongs to a function space $X$ which is infinite dimensional in general.
- $X$ should meet the requirements specified from the original PDEs and boundary conditions.


## Changes from the previous setting

- $\frac{\partial}{\partial t} \rightarrow \frac{d}{d t}$
- $\frac{\partial}{\partial x} \rightarrow$ operations in the function space $X$
- the PDE to a dynamical system in $X$


## Absolute climate model

Let

$$
\begin{equation*}
u=\binom{\psi}{\theta}: t \mapsto u(t), \quad t \in I \tag{15}
\end{equation*}
$$

where $\psi$ and $\theta$ are stream function and the deviation of the temperature, respectively. The original PDE (13) can be rewritten for $u$ as below.

## the abstract ODE for $u$

Considering $u: I \rightarrow X$, the abstract ODE for $u$ is

$$
\begin{equation*}
\frac{d(D u)}{d t}=A u+N(u) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
D u=\binom{\Delta \psi}{\theta}, \quad A u=\binom{\nu \Delta^{2} \psi+c \frac{\partial \theta}{\partial x}}{\kappa \Delta \theta+\frac{T_{0}}{\pi} \frac{\partial \psi}{\partial x}}, \quad N(u)=\binom{-\frac{\partial(\psi, \Delta \psi)}{\partial(x, y)}}{-\frac{\partial(\psi, \theta)}{\partial(x, y)}} . \tag{17}
\end{equation*}
$$

## Dimension reduction

The solutions of the linearized system

$$
\begin{equation*}
\frac{d(D u)}{d t}=A u \tag{18}
\end{equation*}
$$

are of the form

$$
\begin{equation*}
u=\binom{\psi}{\theta}=\binom{\xi(t) \psi_{a, n}}{\eta(t) \theta_{a, n}}, \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \psi_{a, n}:(x, y) \mapsto \psi_{a, n}(x, y)=\sin (a x) \sin (n y),  \tag{20}\\
& \theta_{a, n}:(x, y) \mapsto \theta_{a, n}(x, y)=\cos (a x) \sin (n y),
\end{align*}
$$

for some $a>0$ and $n=1,2, \cdots$. Then, $\xi$ and $\eta$ satisfy a system of ODEs

$$
\begin{align*}
& \dot{\xi}=-\nu\left(a^{2}+n^{2}\right) \xi+\frac{a c}{a^{2}+n^{2}} \eta, \\
& \dot{\eta}=\frac{a T_{0}}{\pi} \xi-\kappa\left(a^{2}+n^{2}\right) \eta . \tag{21}
\end{align*}
$$

## Dimension reduction

We only consider $n=1$ which is the most dominant term and look for solution in the subspace spanned by the coordinate vector $u_{a, 1}$ keeping a free. The nonlinear component in the system (16) induces

$$
\begin{equation*}
N\left(u_{a, 1}\right)=\binom{\frac{\partial\left(\psi_{a, 1}, \Delta \psi_{a, 1}\right)}{\partial(x, y)}}{\frac{\partial\left(\psi_{a, 1}, \theta_{a}, 1\right)}{\partial(x, y)}}=\frac{1}{2} a\binom{0}{\sin (2 y)}, \tag{22}
\end{equation*}
$$

and so, include it as a third coordinate function. An approximate solution of (16) is given as

$$
\begin{equation*}
u=\binom{\psi}{\theta}=\binom{\xi(t) \psi_{a, 1}}{\eta(t) \theta_{a, 1}}-\lambda(t)\binom{0}{\sin (2 y)} . \tag{23}
\end{equation*}
$$

And do this process one more time to get a projection on a three-dimensional state space of $\xi, \eta$, and $\lambda$.

## Dimension reduction

The nonlinear system (16) reduces to a system of ODEs for $\xi, \eta$, and $\lambda$,

$$
\begin{align*}
& \dot{\xi}=-\nu\left(a^{2}+1\right) \xi+\frac{a c}{a^{2}+1} \eta, \\
& \dot{\eta}=\frac{a T_{0}}{\pi} \xi-\kappa\left(a^{2}+1\right) \eta-a \xi \lambda,  \tag{24}\\
& \dot{\xi}=-4 \kappa \lambda+\frac{1}{2} a \xi \eta
\end{align*}
$$

## the Lorenz equations

By reparametrization of variable, we get the Lorenz equations

$$
\begin{align*}
& \dot{x}=-\sigma x+\sigma y, \\
& \dot{y}=\rho x-y-x z  \tag{25}\\
& \dot{z}=-\beta z+x y
\end{align*}
$$

## Equilibrium solutions

Lorenz equations can be analyzed by their equilibrium solutions which are either equilibrium points or periodic orbits. The critical points of the linearized model are

- $(0,0,0)$ for $\rho>0$, and additionally,
- $C_{ \pm}=( \pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$ for $\rho>1$.

Illustrate the solution behavior under

- the fixed parameters $\sigma=10$, and $\beta=\frac{8}{3}$,
- $\rho_{H}=\frac{\sigma+\beta+3}{\sigma-\beta-1}=2.4737$ as a critical point for $\rho>1$ when analyzing $C_{ \pm}$
- four distinct initial conditions are chosen arbitrarily to have same distance $(=0.1)$ from the critical point
In the figures, the points for ICs are marked as ${ }^{*}$, the origin is marked as *, and for $\rho>1, C_{ \pm}$are marked as *.


## Initial conditions * near the origin ( $\rho=0.1,1$ )

- For $\rho=0.1<1$, the origin becomes an attractor and is stable.



Figure: Solution behavior for initial conditions near the origin

## Initial conditions * near the origin $(\rho=10,100)$

- When $\rho \geq 1$, the origin is a saddle point.
- For $\rho=10>1$, the solutions converge to $C_{ \pm}$. The origin is unstable.
- For $\rho=100 \gg 1$, the solutions are periodic orbits along $C_{ \pm}$, and the origin is still unstable.



Figure: Solution behavior for initial conditions near the origin

## Initial conditions * near $C_{+}(\rho=1.1,2.3)$

${ }^{*} C_{-}$case is symmetric.

- For $1<\rho=1.1,2.3<\rho_{H}, C_{+}$becomes an attractor and is stable.



Figure: Solution behavior for initial conditions near $C_{+}$

## Initial conditions * near $C_{+}(\rho=10,100)$

* C_ case is symmetric.
- For $\rho=10>\rho_{H}, C_{+}$gets unstable.
- For $\rho=100 \gg 1$, the solutions form periodic orbits along $C_{ \pm}$, and $C_{+}$is still unstable.


Figure: Solution behavior for initial conditions near $C_{+}$

## Initial conditions * far from equilibrium points

## IC at $(1,1,1), \rho=0.1,1$.

- For $\rho=0.1<1$, the solution converges to the origin.



Figure: Solution behavior for initial conditions at $(1,1,1)$

## Initial conditions * far from equilibrium points

IC at $(1,1,1), \rho=10,100$.

- For $\rho=10>1$, the solution converges to $C_{+}$.
- For $\rho=100 \gg 1$, the solution is a periodic orbit along $C_{ \pm}$and does not converge.
$\rho=10$

$\rho=100$


Figure: Solution behavior for initial conditions at ( $1,1,1$ )

## Discussion

- In the sense of climate modeling, equilibrium points can be interpreted as a climate state which does not change over multiples of the typical time scale. As for periodic orbits, it can be interpreted as a substantial evidence for time-periodic patterns in the Earth's climate.
- The sensitive dependence to initial condition as well as the choice of parameters manipulate the Earth's atmospheric convection does have the chaotic behavior.
- The current model is a simplified one which is obtained by reducing the dimension of an infinite dimensional function space $X$ truncated by a few dominant terms.
- Instead, we may consider RKHS framework to find an optimal function $f$ which is still in an infinite dimensional space, but easily achievable by a PSD kernel corresponding to the inner product in that space.


## References

Lorenz's paper [1], and textbooks [2, 3]
Edward N. Lorenz.
Deterministic nonperiodic flow.
Journal of Atmospheric Sciences, 20(2):130-141, 1963.
Hans Kaper and Hans Engler.
Mathematics and Climate.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.

固 Hugues Goosse.
Climate System Dynamics and Modelling.
Cambridge University Press, 2015.

