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Abstract

Support Vector Machine (SVM) provides a linear classifier for binary classification problems.
Complex decision boundaries in the input feature space are handled by nonlinear kernels to the
SVM. Theories in Reproducing Kernel Hilbert Spaces (RKHS) state that, given a kernel K and a set
of M given data {xi, yi}Mi=1, a SVM classifier function can be written as f(x) = α0 +

∑M
i=1 αiK(x, xi)

for some coefficients αis. Also, applying conformal transforms to a positive definite kernel produces
another positive definite kernel which are in more complexity. Hence, in case that well-known
kernels fail given the current training data, a new kernel can be tried by optimizing the coefficients
of a conformal kernel in the way to maximize the ratio ”(Between-class error)/(Within-class error)”
of the training data. Here, data-dependent kernel SVM is applied to an application of classifying
tumor/tumor-free organs from gene expression data and compared its classification performance with
other well-known kernels.
Keywords: Data-dependent, Support Vector Machine, Reproducing Kernel Hilbert Space
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1 Problem statement

Consider a binary classification problem which is stated as below.
Let X be an input space and Y = {±1} be an output space for two classes. Given paired data

{(xi, yi)}i=1,··· ,N ⊂ X × Y , build a classifier T : X → Y . It is considered that T separates the input
space X into several regions providing decision boundaries that separate the inputs.

Depending on the structure of inputs, decision boundaries could be linear or nonlinear.

Approaches to find the decision boundary induce optimization problems. Support vector machine is
one of them.

2 Mathematical Preliminaries

2.1 Support Vector Machines

The formulation and notations are following [2].

2.1.1 Formulation of the optimization problem

Let us first consider the case that a hyperplane {x : f(x) = xTβ + β0 = 0} where ‖β‖ = 1 clearly
separates the classes. One idea to build such a hyperplane is to maximize the margin M between points
and the plane. Since the classes are separable, we can find a function f such that yif(xi) > 0 ∀i. This
is called a Support vector machine (SVM) and can be witten as

max
β,β0,‖β‖=1

M (1)

subject to yi(x
T
i β + β0) ≥M, i = 1, · · · , N .

The assumption that ‖β‖ = 1 can be relaxed by setting M = 1/‖β‖, so the problem can be reformu-
lated as

min
β,β0

‖β‖ (2)

subject to yi(x
T
i β + β0) ≥ 1, i = 1, · · · , N . This is a convex optimization problem with quadratic

criterion.
Now assume that the classes overlap in the input space. Define the slack variable ξ = (ξ1, ξ2, · · · , ξN )

where ξi ≥ 0,
∑N
i=1 ξi ≤ constant to indicate the overlaps. Retaining the convexity of the problem we

can formulate a similar problem.
min
β,β0

‖β‖ (3)

subject to yi(x
T
i β + β0) ≥ 1 − ξi, i = 1, · · · , N, ξi ≥ 0,

∑N
i=1 ξi ≤ constant. This is referred to the

standard support vector classifier. Note that misclassification occurs if ξi > 1.

2.1.2 Lagrangian method and its solution

Using Lagrangian multipliers, the problem (3) with slack variables can be rewritten as a quadratic
programming

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi (4)
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subject to yi(x
T
i β + β0) ≥ 1− ξi, i = 1, · · · , N, ξi ≥ 0 where C is a parameter.

Lagrangian primal function is

LP =
1

2
‖β‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi (5)

where αi, µi ≥ 0. minβ,β0,ξi LP can be obtained when

β =

N∑
i=1

αiyixi, (6)

0 =

N∑
i=1

αiyi, (7)

αi = C − µi, (8)

∀i. Therefore, we can get Lagrangian dual function by plugging them in the primal function LP .

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ (9)

subject to 0 ≤ αi ≤ C and 0 =
∑N
i=1 αiyi. Additional constraints

αi[yi(x
T
i β + β0)− (1− ξi)] = 0, (10)

µiξi = 0, (11)

yi(x
T
i β + β0)− (1− ξi) ≥ 0 (12)

for i = 1, · · · , N should be included to apply KKT condition. Then, by KKT condition, the optimal
point for maxαi

LD is necessarily the solution to the primal and dual problem.
According to (6), the solution for β has the form

β̂ =

N∑
i=1

α̂iyixi (13)

with nonzero α̂i only for those observations i for which the constraint in (12) are exactly met (due to

(10)). Those observations are called the support vectors. For these support vectors, ξ̂i = 0 and due to

(8) and (11), 0 < α̂i < C and otherwise, α̂i = 0. Such margins (0 < α̂i < C and ξ̂i = 0) are used to

determine β̂0.
Given the solutions β̂ and β̂0, the decision function T can be found as T̂ = sign[f̂(x)].

2.1.3 Kernel SVM

So far, the SVM classifier finds linear boundaries in the input space X. Generally, linear boundaris
in the enlarged space achieve better separation, and translate to nonlinear boundaries in the original
space. Transform the input features as h(xi) = (h1(xi), h2(xi), · · · , hM (xi)) ∈ RM and produce nonlinear

function f̂(x) = h(x)T β̂ + β̂0 and the classifier T̂ = sign[f̂(x)]. In this way, the enlarged input space
could be very large, so that it is computationally prohibitive. Recall that the Lagrange dual function (9)
has the form

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′ < h(xi), h(xi′) > (14)

and from (6), the solution function f(x) has the form

f(x) = h(x)Tβ + β0 (15)

=

N∑
i=1

αiyi < h(x), h(xi) > +β0. (16)
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Therefore, we require only the knowledge of the kernel function K(x, x′) =< h(x), h(x′) > instead of the
transformation h(x). Particular choices of h give us cheaper calculations of the kernel K(x, x′) such as

dth-degree polynomial: K(x, x′) = (1+ < x, x′ >)d, (17)

radial basis: K(x, x′) = exp(γ‖x− x′‖2), (18)

sigmoid: K(x, x′) = tanh(κ1 < x, x′ > +κ2). (19)

2.2 Reproducing kernel Hilbert spaces

We are going to optimize above problems over certain function spaces. Hilbert spaces defined by repro-
ducing kernels (RKHS) have computationally attractive properties. Further details are in [4].

2.2.1 Definition of RKHS

Note Hilbert space H is an inner product space with inner product < ·, · > which is complete. (i.e.
Every Cauchy sequence converges in H.) Examples are Rd, L2, `2, etc.

A linear functional on a Hilbert space H is a mapping L : H → R that is linear. And a linear
functional L is bounded if for all f ∈ H, there exists M ≤ ∞ such that |L(f)| ≤ M‖f‖H. The Riesz
representation theorem characterizes bounded linear functionals in a Hilbert space.

Riesz representation theorem Let L be a bounded linear functional on a Hilbert space. Then there
exists a unique g ∈ H such that L(f) =< f, g >H for all f ∈ H. (g is referred to the representer of the
functional L.)

According to Riesz representation theorem, a bounded linear functionals in a Hilbert space is an inner
product of a representer. In RKHS, we will see that the kernel acts as the representer for the evaluation
functional.

A symmetric bivirate function K : X ×X → R is positive semidefinite if for all n ∈ N and elements
{xi}i=1,··· ,n ⊂ X, the n× n matrix with elements Kij = K(xi, xj) is positive semidefinite. By defining a
mapping Φ : X → Y where both X and Y are Hilbert spaces, K can be expressed as a Gram matrix of
the form K(x, z) =< Φ(x),Φ(z) >Y .

Any PSD kernel K can be used to construct a particular and unique Hilbert space of functions. And
this Hilbert space is unique and has the kernel reproducing property

< f,K(·, x) >H= f(x) ∀f ∈ H. (20)

It allows to define a feature map x 7→ K(·, x) ∈ H from the kernel K. The reproducing property
ensures that

< K(·, x),K(·, z) >H= K(x, z) ∀x, z ∈ X. (21)

To define a Hilbert space with the reproducing property (20), begin with a set H̃ of functions of
the form f(·) =

∑n
j=1 αjK(·, xj) for some integer n ≥ 1, set of points {xj}nj=1 ⊂ X and weight vector

α ∈ Rn. It can be shown that H̃ is a vector space with inner product of f(·) =
∑n
j=1 αjK(·, xj) and

g(·) =
∑m
k=1 βkK(·, xk) defined as

< f, g >H̃:=

n∑
j=1

m∑
k=1

αjβkK(xj , yk). (22)

Moreover, this inner product satisfy the reproducing property (20),

< f,K(·, x) >H̃:=

n∑
j=1

αjK(xj , x) = f(x) (23)

where the kernel acts as the representer for the evaluation functional.
Finally, given any Hilbert space H in which the evaluation functionals are bounded, there is a unique

PSD kernel K that satisfies the reproducing property (20).
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2.2.2 Mercer’s theorem

Mercer’s theorem states the decomposition of a kernel to PSD kernels.
For a nonnegative measure P over a compact metric space X, consider the function class L2(X;P) or

simply L2(X) with the norm

‖f‖2L2(X;P) =

∫
X

|f(x)|2dP(x). (24)

Given a symmetric PSD kernel K : X ×X → R which is continuous and
∫
X×X K

2(x, z)dP(x)dP(z) <∞,

define a linear operator TK on L2(X) via

TK(f)(x) :=

∫
X

K(x, z)f(z)dP(z). (25)

Apply Cauchy-Schwartz inequality

‖TK(f)‖2L2(X) =

∫
X

(∫
X

K(x, z)f(x)dP(x)

)2

dP(z) (26)

≤ ‖f‖2L2(X)

∫
X×X

K2(x, z)dP(x)dP(z) (27)

to show that TK is a bounded operator on L2(X). Operators of these type are known as Hilbert-Schmidt
operators.

Mercer’s theorem Suppose that X is compact, the kernel K is continuous and PSD, and satisfies
the Hilbert-Schmidt condition (26). Then there exists a sequence of eigenfunctions (φj)

∞
j=1 that form an

orthonormal basis of L2(X;P), and its corresponding nonnegative eigenvalues (µj)
∞
j=1 such that

TK(φj) = µjφj for j = 1, 2, · · · . (28)

Moreover, the kernel function has the expansion

K(x, z) =

∞∑
j=1

µjφj(x)φj(z), (29)

where the convergence of the series holds absolutely and uniformly.
Mercer’s theorem induces an idea on RKHS to provide an embedding of the function domain X into

a subset of the sequence space `2(N). Using the eigenfunctions and eigenvalues from Mercer’s theorem,
define a mapping Φ : X → `2(N) via

x 7→ Φ(x) := (
√
µ1φ1(x),

√
µ2φ2(x),

√
µ3φ3(x), · · · ). (30)

By construction,

‖φ1(x)‖2`2(N) =

∞∑
j=1

µjφ
2
j (x) = K(x, x) <∞, (31)

and

< φ1(x), φ1(z) >2
`2(N)=

∞∑
j=1

µjφj(x)φj(z) = K(x, z). (32)

Corollary of Mercer’s theorem Consider a kernel satisfying the conditions of Mercer’s theorem
with associated eigenfunctions (φj)

∞
j=1 and nonnegative eigenvalues (µj)

∞
j=1. It induces the RKHS

H :=

f =

∞∑
j=1

βjφj(x)|(µj)∞j=1 ⊂ `2(N),

∞∑
j=1

β2
j

µj
<∞

 , (33)

along with inner product

< f, g >H:=

∞∑
j=1

< f, φj >< g, φj >

µj
<∞, (34)

where < ·, · > denotes the inner product in L2(X;P).
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2.2.3 operations on RKHS

Now we will see a number of operations on RKHS that allow us to build new spaces which are referred
in [3].

First, define two Hilbert spaces from given Hilbert spaces H1 and H2 of functions defined on domains
X1 and X2, respectively. Consider two spaces

• Addition:
H1 + H2 := {f1 + f2|fj ∈ Hj , j = 1, 2} (35)

with norm ‖f‖H2 := minf=f1+f2,f1∈H1,f2∈H2
{‖f‖2H1

+ ‖f‖2H2
}

• Tensor product:

H1 ⊗H2 := {h : X1 ×X2 → R|h =

n∑
j=1

fjgj for some n ∈ N, fj ∈ H1, gj ∈ H2 ∀j ∈ N} (36)

where its inner product is defined for h =
∑n
j=1 fjgj and h̃ =

∑m
j=1 f̃j g̃j as < h, h̃ >H:=∑n

j=1

∑m
k=1 < fj , f̃k >H1

< gj , g̃k >H2
.

Now, the operations below defines a kernel from given kernels.

• sums and limits of kernels
The set of kernels forms a convex cone, closed under pointwise convergence.

– If K1 and K2 are kernels, and α1, α2 ≥ 0, then α1K1 +α2K2 is a kernel. Moreover, the kernel

K = K1 +K2 (37)

reproduces the RKHS in (35).

– If K1,K2, · · · are kernels, and K(x, z) := limn→∞Kn(x, z) exists for all x, z, then K is a kernel.

• pointwise products of kernels
If K1,K2 are kernels, then K1K2, defined by

(K1K2)(x, z) := K1(x, z)K2(x, z) (38)

is a kernel.

– A special case is conformal transforms,

Kf (x, z) = f(x)K(x, z)f(z) (39)

obtained by multiplying a kernel K with a rank-one kernel K′ = f(x)f(z) where f is a positive
function. Since

cos (∠ (Φf (x),Φf (z))) =
f(x)K(x, z)f(z)√

f(x)K(x, x)f(x)
√
f(z)K(z, z)f(z)

(40)

=
K(x, z)√

K(x, x)
√
K(z, z)

= cos (∠ (Φ(x),Φ(z))) , (41)

this transform does not affect the angles in the feature spaces.

• Dot product kernels
A differentiable function of the dot product K(x, z) = K(< x, z >) has to satisfy

K(t) ≥ 0,K′(t) ≥ 0,K′(t) + tK′′(t) ≥ 0 (42)

for any t ≥ 0, in order to be a PSD kernel. A function K(x, z) = K(< x, z >) defined on an infinite
dimensional Hilbert space, with a power series expansion

K(t) =

∞∑
n=0

ant
n, (43)

is a PSD kernel iff for all n, we have an ≥ 0. A slightly weaker condition applies for finite
dimensional spaces.

6



MATH697FA Sp21 Project Paper

• tensor product kernels
If K1,K2 are kernels defined respectively on X1 ×X1 and X2 ×X2, then their tensor product,

(K1 ⊗K2)(x1, x2, z1, z2) = K1(x1, z1)K(x2, z2), (44)

is a kernel on (X1 × X2) × (X1 × X2) where x1, z1 ∈ X1 and x2, z2 ∈ X2. Moreover, the kernel
K1 ⊗K2 reproduces the RKHS in (36).

• direct sums
If K1,K2 are kernels defined respectively on X1 ×X1 and X2 ×X2, then their direct sum,

(K1 ⊕K2)(x1, x2, z1, z2) = K1(x1, z1) +K(x2, z2), (45)

is a kernel on (X1 ×X2)× (X1 ×X2) where x1, z1 ∈ X1 and x2, z2 ∈ X2.

2.3 SVM classifiers in RKHS

Suppose that the transformed feature h arises from the eigen-expansion of a positive definite kernel K,

K(x, x′) =

∞∑
i=1

φm(x)φm(x′)δm (46)

and hm(x) =
√
δmφm(x). Then this kernel reproduces a RKHS HK where functions in the HK are of the

form

f(x) =

∞∑
i=1

ciφi(x) (47)

with the constraint that

‖f(x)‖2HK
:=

∞∑
i=1

c2i
δi
<∞. (48)

Letting a penalty functional J(f) = ‖f(x)‖2HK
, consider the regularized optimization problems which are

equivalent

min
f∈HK

[
N∑
i=1

L(yi, f(xi)) +
λ

2
|f(x)‖2HK

]
(49)

⇔ min
f∈HK

 N∑
i=1

L(yi,

∞∑
j=1

cjφj(xi)) +
λ

2

∞∑
i=1

c2i
δi

 (41)

⇔min
α0,α

[
N∑
i=1

(1− yi(α0 +

∞∑
m=1

cmφm(xi)))+ +
λ

2
αTKα

]
(42)

where λ to be determined empirically.
Wahba (1990)[1] showed that the solution f is finite-dimensional and has the form

f(x) = α0 +

N∑
i=1

αiK(x, xi), (50)

Note that the RKHS HK provides useful properties such as the reproducing property (20), the
evaluation of f ∈ HK at the point xi is f(xi) =< K(·, xi), f >. Also, due to the property that
< K(·, xi),K(·, xj) >HK= K(xi, xj), the penalty functional can be written as

J(f) =

N∑
i=1

N∑
j=1

αiαjK(xi, xj). (51)

3 Methods

3.1 Data dependent kernel

Xiong[5] provided a formulation and algorithm to obtain a data dependent kernel.

7
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3.1.1 Formulation of the kernel

Let {(xi, yi)}Ni=1 be a set of N observations where the input xi ∈ Rd and the output yi = ±1, ∀i =
1, · · · , N . It is called the training dataset. Our goal is to fit a kernel SVM classifier to this training
dataset. The kernel K is determined with respect to given data and is called the data dependent kernel.

The data dependent kernel K is formulated by the conformal transform as

K(x, z) = q(x)K0(x, z)q(z) (52)

where x, z ∈ Rd, K0(·, ·) is called the basic kernel which can be any kernel such as RBF kernel or a
polynomial kernel, and q(·) is called the factor function which takes the form of

q(x) = α0 +

N∑
i=1

αiK1(x, xi) (53)

where K1(x, xi) = exp(−γ1‖x− xi‖2) and αi’s are the combination coefficients.
Denote the kernel matrices corresponding to K(·, ·) and K0(·, ·) to K and K0. Then there is a relation

between K and K0 written as

K = [q(xi)K0(xi, xj)q(xj)]N×N = QK0Q (54)

where Q is a diagonal matrix with diagonal elements q(xi), i = 1, · · · , N . Also denote the vectors
q = (q(x1), q(x2), · · · , q(xN ))T and α = (α(x1), α(x2), · · · , α(xN ))T . Then we have q = K1α where K1

is an N × (N + 1) matrix

K1 =


1 k1(x1, x1) · · · k1(x1, xN )
1 k1(x2, x1) · · · k1(x2, xN )
...

...
. . .

...
1 k1(xN , x1) · · · k1(xN , xN )

 . (55)

3.1.2 Kernel optimization

Let us fix the basic kernel K0 and K1 for the factor function q. The combination coefficients α will
be chosen to maximize the class separability of the training data in the mapped feature space which is
measured by Fisher scalar. Let us define Fisher scalar

F =
tr(Sb)

tr(Sw)
(56)

where Sb represents the ”between-class scatter matrix” and Sw ”within-class scatter matrix”.
Suppose that N1 training data are labeled as yi = 1 and N2 training data are labeled as yi = −1,

and N = N1 +N2. Then the basic kernel matrix K0 can be partitioned as

K0 =

(
K0

11 K0
12

K0
21 K0

22

)
(57)

where the sizes of submatrices K0
11, K0

12, K0
21 and K0

22, are N1 ×N1, N1 ×N2, N2 ×N1, and N2 ×N2,
respectively. Define

B0 =

( 1
N1
K0

11 0

0 1
N2
K0

22

)
− 1

N
K0 (58)

W0 = diag(k011, k
0
22, · · · , k0NN )−

( 1
N1
K0

11 0

0 1
N2
K0

22

)
(59)

and M0 = KT
1 B0K1, N0 = KT

1 W0K1 where the elements of K1 are aligned in the same order for K0.
Then the Fisher scalar (56) can be written as

F (α) =
αTM0α

αTN0α
. (60)

8
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Setting our objective function F (α), the optimization problem

max
α

F (α) (61)

has the solution whenever the matrix N0 is nonsingular, and the optimal value is λ∗ at α = α∗ where λ∗

is the largest eigenvalue and α∗ is the corresponding eigenvector of the system

M0α = λN0α. (62)

Nonsingularity of the matrix N0 may not be satisfied depending on the problem. If N0 is noticed to
be singular, then modify the problem (62) as

M0α = λ(N0 + µIN )α (63)

with the regularization coefficient µ, where IN is the N ×N identity matrix.
Xiong[5] used gradient ascent method to calculate the optimal α using the below algorithm.

Algorithm 1: Gradient ascent method to calculate α∗

Result: α∗ = αmaxIterCnt

1 {(xi, yi)}i=1,··· ,N where xi ∈ Rd, and yi ∈ {±1};
2 while n ≤ maxIterCnt do
3 Group the data according to their class labels. Calculate K0,K1 first, then M0, N0.;

4 Initialize α0 = (1, 0, · · · , 0)T , and set n = 0.;

5 Calculate J1 = (αn)TM0α
n, and J1 = (αn)TN0α

n.;
6 Update αn by

αn+1 = αn + η(n)(
1

J2
M0 −

J1
J2
2

N0)αn

and then normalize αn+1.;

7 end

Note) η(t) = η0(1− t
maxIterCnt ) is decreasing.

3.2 Evaluation of models

P (predicted) N (predicted)

P (actual) True Positive False Negative
N (actual) False Positive True Negative

This table is called confusion matrix. Here are the commonly used metrics to evaluate the performance
of machine learning models.

Accuracy:
TP + TN

N
(64)

Precision:
TP

TP + FP
(65)

Recall:
TP

TP + FN
(66)

3.3 Multidimensional scaling (MDS)

In order to visualize the performance of a classifier in case of high dimensional inputs in a better way,
we consider the projection of the training and test data onto their top two significant dimensions. Here,
multidimensional scaling (MDS) technique is used.

[ref](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html)

4 Application - Tumor/Tumor-free Organs Classification Using
Gene Expression Data

4.1 Data set description

GDC portal (https://portal.gdc.cancer.gov/) built up a large open database of cancer genomic/clinical
data. A certain cancer project reposits patients’ gene expression level data and their labels according to

9
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Figure 1: Input data and labels

the existence of tumors in the certain organ. Figure 1 shows the class labels y ∈ {0, 1}, for the convenience
and, the data matrix x for the RNA-sequence array (from the TCGA-BRCA project), where its rows
and columns corresponds to

• rows: gene labels

• columns: sample indices (TP corresponds to the tumor(-primary) sample with data label 1, and
NT corresponds to the non-tumor sample with data label 0).

Among the 50 TP samples and 50 NT samples, training and test sets are divided with the ratio of
6:4. 10 most relevant genes(rows) are chosen by the BW score on gene j calculated as

g(j) =

∑2
k=1mk(x̄k(j)− x̄)2∑2

k=1

∑
i∈Ck

(xi(j)− x̄k)2
(67)

where Ck denotes the index set of the k-th class (k = 1, 2), mk is the number of samples in Ck, and
x̄k(j) and x̄ represent the average value within the k-th class and of the entire training sample on gene
j, respectively. High value in g implies that the gene j better separates the different classes and gathers
within a class.

4.2 Software

Python v.3.9 platform and its libraries

• scikit-learn : generate inputs, SVM training (https://scikit-learn.org/stable/modules/svm.html),
multidimensional scaling (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html)

• matplotlib.pyplot: visualize the data and performances

• pandas: retrive R dataframe into python

R and its library

• tcgaBiolinks : retrieve tcga data from GDC portal. (https://portal.gdc.cancer.gov/)

4.3 Results

Three different kernels (linear, gaussian, data-dependent) are individually used for training SVMs, mea-
sured by performance metrics in sec 3.2 and plotted in R2 by projecting data using the MDS technique.

10
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The setups for the data-dependent kernel K(x, y) = q(x)TK0(x, y)q(y) where q(x) =
∑M
i=1 α0 +∑M

i=1 αiK1(x, xi). It is optimized using the algorithm of Xiong, and the hyper-parameters for the
optimization are as below:

• K0,K1 are gaussian kernels with the fixed parameter γ = 1
M

• η(i) = 1 ∗ (1− i
maxIterCnt ) for the step size of each gradient-ascent iteration

• maxIterCnt = 1000 but terminated when the objective function starts to decrease at the 894th
step with the objective function value 0.01975309.

It is different from the observation from Xiong [6] that the Within-Class error is typically almost
zero. Even, the objective function value which is given as a ratio of the Between-Class error and the
Within-Class error is still less than 1, which foretells the performance of the kernel would be bad.

The performance of individual kernels on 18 test samples which are labeled as 1 and 22 test samples
which are labeled as 0 are given in Table 4.3. Unfortunately, the linear kernel could only discriminate
the test data but it was still not perfect. It fails at classifying some samples of the label 1. Whereas,
the other two non-linear kernels based on the gaussian kernel didn’t work at all. The values for precision
and recall show that the classifiers output 0 for the entire data.

Linear SVM Rbf kernel SVM Data-driven SVM

Accuracy (%) 80.00 45.00 45.00
Precision 0.92 0.45 0.45

Recall 0.61 1.00 1.00

Table 1: Performances of three different kernels

The visualization of high-dimensional input is aided by the MDS technique which projects the test
data into R2. Test data of two different classes and their support vectors are shown in Figure 2. Blue dots
represent the support vectors, while red and yellow dots are label 0 and 1, respectively. Visualization
gives much easier explanation that the gaussian kernel selects a wrong support vector on the upper right
side of the second figure. The sklearn svm fitting function could not find support vectors. The possible
reason is due to the mistakes on providing test data in case of user-prescribed kernel.
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Figure 2: Projection of data onto 2 significant input features, and support vectors
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