Sampling through Particle Descent Algorithm induced by (f, Γ) -gradient flow

Hyemin Gu

hgu@umass.edu

May 5, 2022

Hyemin Gu (UMass)

Sampling through Particle Descent Algorithm

Motivation

We've seen various Monte Carlo methods for data sampling.

Q: Can we sample from a distribution where its closed formula is unknown, but we have a set of samples from them?

A: Yes, by learning a distribution with an aid of machine learning! Formulate the problem as mass transport problem.

Note what we want is a (posterior) distribution $Q = \mathbb{P}(X|Y)$ and its samples $x^i \sim Q$, not a conditional mean $\mathbb{E}[X|Y]$.

Q: What measures how far a distribution is from the other?

A: Divergence D(P|Q) given two probability measures P, Q $D: \mathcal{P}(\Omega) \times \mathcal{P}(\Omega) \rightarrow [0, \infty]$ is said to have the divergence property if D(P, Q) = 0 iff P = Q. Example: KL divergence $D_{KL}(P|Q) = \mathbb{E}_P \left[-\log\left(\frac{dP}{dQ}\right) \right] = \int_{\Omega} -\log\left(\frac{dP}{dQ}\right) dP = \mathbb{E}_Q \left[\frac{dP}{dQ} \log\left(\frac{dP}{dQ}\right) \right]$ *P*: proposed measure, *Q*: target measure Note By nonnegativity, $D_{KL}(P|Q)$ diverges unless $P \ll Q$.

MIN KL divergence \Leftrightarrow MAX likelihood $L_n(\theta) = \prod_{i=1}^n f_{\theta}(x_i)$ Log likelihood $I_n(\theta) = \log L_n(\theta) = \sum_{i=1}^n \log f_{\theta}(X_i)$ and $\theta^* = MLE$.

$$\max_{\theta} \frac{1}{n} \log I_n(\theta) = \max_{\theta} \frac{1}{n} \sum_{i=1}^n \log f_{\theta}(X_i)$$
(1)

$$= \max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log f_{\theta}(X_i) - \log f_{\theta^*}(X_i)$$
(2)

$$= \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \frac{f_{\theta^*}(X_i)}{f_{\theta}(X_i)}$$
(3)

By LLN, $\lim_{n\to\infty} -\frac{1}{n}\sum_{i=1}^{n}\log \frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)} = D(P_{\theta}|P_{\theta^*}).$

f divergence

Variational inference gives general formulation of divergences for a class of functions f.

$$D_f(P|Q) = \sup_{g \in \mathcal{M}_b(\Omega)} \mathbb{E}_P[g] - \mathbb{E}_Q[f^*(g)] = \mathbb{E}_Q[f(dP/dQ)]$$
(4)

where $f^*(x) = \sup_{x \in \mathbb{R}} \{yx - f(x)\}$ is Legendre transform of f. General requirements for the functions f:

• f is convex and lower-semicontinuous

•
$$f(0) = 1$$

Note 1 f divergence should be $P \ll Q$ for the last equality of (4). Note 2 $\mathbb{E}_P[g] - \mathbb{E}_Q[f^*(g)]$ is strictly concave in g which guarantees a unique optimizer g^* .

Example $f(x) = x \log x$ characterizes the KL divergence.

Integral probability metric

Integral probability metric on a function space $\boldsymbol{\Gamma}$

$$W^{\Gamma}(P,Q) = \sup_{g \in \Gamma} \mathbb{E}_{P}[g] - \mathbb{E}_{Q}[g].$$
(5)

Note 1 $\mathbb{E}_P[g] - \mathbb{E}_Q[g]$ is linear in g. Note 2 It can compare not absolutely continuous distributions. **Example** $\Gamma = Lip_b^1$ characterizes the Wasserstein metric.

(f, Γ) -Divergences

$$D^{\Gamma}_f(P|Q) = \sup_{g\in \Gamma} \mathbb{E}_P[g] - \Lambda^Q_f[g]$$

where $\Lambda_f^Q[g] = \inf_{\nu \in \mathbb{R}} \{ \nu + \mathbb{E}_Q[f^*(g - \nu)] \}.$

Theorem (J. Birrell (2022))

 $D_f^{\Gamma}(P|Q)$ has the divergence property if

- There exists a nonempty set $\Psi \subset \Gamma$ with:
 - Ψ is $\mathcal{P}(\Omega)$ -determining.
 - $@ \forall \psi \in \Psi \text{ there exists } c_0 \in \mathbb{R}, \ \epsilon_0 > 0 \text{ such that } c_0 + \epsilon \psi \in \mathsf{\Gamma}, \ \forall |\epsilon| < \epsilon_0.$
- **2** *f* is strictly convex on a neighborhood of 1.
- § f^* is finite and C^1 on a neighborhood of right derivative f'_+ at 1.

 (f, Γ) -divergence defined as above interpolates f-divergence and Γ -IPM. Note For Γ closed under shift $g \to g - \nu, \nu \in \mathbb{R}$, $D_f^{\Gamma}(P|Q) = \sup_{g \in \Gamma} \mathbb{E}_P[g] - \mathbb{E}_Q[f^*(g)].$

(6)

Gradient flow on the space of probability measures

A gradient flow governed by the continuity equation

$$\frac{\partial \nu}{\partial t} + div(\nu V) = 0 \tag{7}$$

where V is a vector field.

Let $P_t, Q \in \mathcal{P}(X)$. Fix the target measure Q, and consider the free energy functional $\mathcal{F} : \mathcal{P}(X) \to \mathbb{R}$ such that $\mathcal{F}(P_t) = D(P_t|Q)$. **Recall** $D_f^{\Gamma}(P|Q) = \sup_{g \in \Gamma} \mathbb{E}_P[g] - \mathbb{E}_Q[f^*(g)]$ In this case, the first variation of \mathcal{F} evaluated at $P_t, \frac{\partial \mathcal{F}}{\partial P_t}$ exists, and it is simply calculated as $g_t^* = \operatorname{argmax}_{g \in \Gamma} \{\mathbb{E}_{P_t}[g] - \mathbb{E}_Q[f^*(g)]\}$. Consider the Cauchy problem given P_0 ,

$$\frac{\partial P_t}{\partial t} = div(P_t \nabla \frac{\partial \mathcal{F}}{\partial P_t}). \tag{8}$$

Note $V = -\nabla \frac{\partial \mathcal{F}}{\partial P_t}$ and so the flow of the measure P_t will flow in direction of decreasing \mathcal{F} .

Mass transportation problem

Mass transportation problem

Find a path $\{P_t\}_{t\geq 0}$ starting from P_0 that converges to Q while decreasing the energy functional $\mathcal{F}(P_t)$ i.e. $\frac{d\mathcal{F}}{dt}(P_t) \leq 0$.

The continuity equation (8) differs corresponding to the *f* divergence formula. There are several well-known pairs of *f* and the equations. **Example** KL divergence $f(x) = x \log x$; Fokker-Planck equation $\frac{\partial P_t}{\partial t} = -div(P_t \nabla (\log Q)) + \Delta P_t$

Theorem (P. Birmpa (2022))

For f = KL and α , found certain conditions on the measures P_0 and Q so that $P_t \rightarrow Q$ in the f divergence within a exponential/polynomial convergence rate.

Particle descent algorithm

Discretize the problem

- with respect to time t with Euler scheme $P_n = P_{t_n}$
- by the empirical measure $P_n^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_n^i}$ obtained from N samples $x_n^i \sim P_n, i = 1, \cdots, N$.

Particle descent algorithm (P. Birmpa, 3 et.al, 2022)

For each time step $t_n = n\Delta t$, move N particles $x_{n+1}^i, i = 1, \cdots, N$ by

$$x_{n+1}^i = x_n^i - \Delta t \nabla g_n^*. \tag{9}$$

Note g_n is constructed from a Neural network with ReLU activation function so that

- The optimizer g_n^* maximizes the form,
- exact calculation for gradients of g_n^* is available,
- can restrict the function space Lip_b^L by spectral normalization.

Particle descent algorithm

Algorithm 1: (f, Γ) -gradient flow particle descent algorithm

Result:
$$\{P_n^{(i)}\}_{i=1}^N$$

1 $\{P_0^{(i)}\}_{i=1}^N \sim P_0, \{Q^{(i)}\}_{i=1}^N \sim Q, \{W'\}_{l=1}^D, L, T, Ir_{\mathcal{NN}}, Ir_P;$
2 $g(x) = \mathcal{NN}(x, \{W'\}_{l=1}^D)$ where W' is random and $\|W'\|_2 = L^{1/D}$ for each I ;

3 for
$$n = 0$$
 to $T - 1$ do

$$g_n^* = \operatorname{argmax}_{W, \|W'\|_2 = L^{1/D}, \operatorname{lr}_{\mathcal{NN}}} \{ \mathbb{E}_{P_n}[g_n] - \mathbb{E}_Q[f^*(g_n)] \};$$

5 Obtain
$$\nabla g_n^*$$
 by AD;
6 $P_{n+1}^{(i)} = P_n^{(i)} - \operatorname{Ir}_P \nabla g_n^*, i = 1, \cdots, N$

∃ >

Example: (KL, Lip)-particle descent algorithm

Meaning: For each time step t_n , one finds a function $g_n^* \in Lip_b^L$ where $D_{KL}^{\Gamma}(P_n|Q) = \mathbb{E}_{P_n}[g_n^*] - \mathbb{E}_Q[f^*(g_n^*)]$ and moves the particles toward the direction that minimizes the KL divergence \Leftrightarrow maximizes the likelihood.

Learning gaussian

KL flow has an equilibrium measure $Q = \frac{1}{Z}e^V$ and the convergence rate is exponential with its convergence rate $-2t/\sigma_Q$ for $V = -|X|^2$ i.e. Q is gaussian with standard deviation σ_Q . Observed for (f, Lip_h^1) -flow.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Comparison with other methods 1: GAN

Generative adversarial network is another ML algorithm for generating samples from a learned distribution.

A corresponding (f, Γ) -GAN and (f, Γ) -particle descent algorithm

- shares the discriminator of the distribution, while
- the PDA generates samples more efficiently from the gradient flow.

Mixture of 4 gaussians

 (KL, Lip_b^L) PDA takes 3 times less updates on the distribution compared to (KL, Lip_b^L) GAN.

L= 1.0			**	**	L= 1.0		**	
L= 10.0	*** ***	**	1995, <i>1997</i> 1997 - 1995	**	L= 10.0		**	
L= 100.0	***	2 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L= 100.0		، میں	and age
L= inf	**		alaya salay Marin salay		L= inf	allen inder Allen inder	* *	alah sajat Alah sajat

Comparison with other methods 2: DeepFRAME - MCMC

DeepFRAME is an image model implemented by neural networks whose algorithm is induced by MCMC. DeepFRAME

- minimizes f = KL, i.e. maximizing the likelihood
- learns KL flow equilibrium measure $Q = \frac{1}{Z}e^{V}$ from $P_n = \frac{1}{Z}e^{V_n}$ where V_n is written as $V_n(X; w) = -F_n(X; w) + \frac{||X||^2}{2\sigma^2}$ and F_n is parametrized by a deep neural network.
- X_n is updated by Langevin monte carlo

$$X_{n+1} = X_n + \frac{\epsilon^2}{2} \nabla V(X, w) + \epsilon Z_n$$
(10)

where $Z_n \sim N(0, \tau^2)$, which solves the Fokker-Planck equation for KL flow.

• Weight update follows by the stochastic gradient descent from training samples and negative samples of P_n .

Example problem: Image generation from MNIST data

(KL, Lip¹) PDA, 200 iterations, Initial distribution $P_0 \sim N(0, 0.5^2)$.

Hyemin Gu (UMass)

Sampling through Particle Descent Algorithm

May 5, 2022

14 / 14