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Motivation

We've seen various Monte Carlo methods for data sampling.

Q: Can we sample from a distribution where its closed formula is
unknown, but we have a set of samples from them?

A: Yes, by learning a distribution with an aid of machine learning!
Formulate the problem as mass transport problem.

Note what we want is a (posterior) distribution @ = P(X|Y) and its
samples x' ~ @, not a conditional mean E[X|Y].

Q: What measures how far a distribution is from the other?

A: Divergence D(P|Q) given two probability measures P, Q

D :P(Q2) x P(2) — [0, 0] is said to have the divergence property if
D(P,Q) =0iff P = Q.
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Example: KL divergence

Dii(PIQ) = Ep |~ log (%5)| = Joo—log (%5) dP = Eq | % log (%5)]

P: proposed measure, Q: target measure
Note By nonnegativity, Dk, (P|Q) diverges unless P < Q.

MIN KL divergence < MAX likelihood L,(0) =[] fa(x:)
Log likelihood 1,(0) = log Ln(8) = >_i_; log fp(X;) and 6* = MLE.

1 1 ¢
max — log I,(0) = max — ; log fy(X;) (1)

1 n
mgaxnzoga( ) — log fy« (Xi) (2)

n fe*
= m|n - ZI (3)
. n fo (Xi

By LLN, limy oo —2 Y7, log 150 = D(Py|Ps-). J
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f divergence

Variational inference gives general formulation of divergences for a class of
functions f.

De(PIQ) = sup Eplg] —Eq[f*(g)] = Eqlf(dP/dQ)]  (4)
gEM(Q)

where f*(x) = sup,cg {yx — f(x)} is Legendre transform of f.
General requirements for the functions f:

@ f is convex and lower-semicontinuous

e f(0)=1
Note 1 f divergence should be P < Q for the last equality of (4).

Note 2 Ep[g] — Eq[f*(g)] is strictly concave in g which guarantees a
unique optimizer g*.
Example f(x) = x log x characterizes the KL divergence.
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Integral probability metric

Integral probability metric on a function space I’
W'(P, Q) = supEp[g] — Eqlg]- (5)
gerl
Note 1 Ep[g] — Eg[g] is linear in g.

Note 2 It can compare not absolutely continuous distributions.
Example [ = Lipll7 characterizes the Wasserstein metric.
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(f,)-Divergences

Dr(P|Q) :ZZ?EP[g] - A7le] (6)

where AL[g] = inf,cr{r + Eq[f*(g — v)]}.
Theorem (J. Birrell (2022))

D; (P|Q) has the divergence property if
© There exists a nonempty set V C I with:
@ V is P(Q)-determining.
@ Vi € V there exists cg € R, €9 > 0 such that ¢g + eip € T, V|e| < €.
@ f is strictly convex on a neighborhood of 1.

@ f* is finite and C on a neighborhood of right derivative fi at 1.

(f,T)-divergence defined as above interpolates f-divergence and I-IPM.
Note For I' closed under shift g -+ g —v,v € R,

D} (P|Q) = supgcr Eplg] — Eq[f*(g)].
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Gradient flow on the space of probability measures

A gradient flow governed by the continuity equation

% +div(irV) =0 (7)
where V is a vector field.
Let P;, Q € P(X). Fix the target measure @, and consider the free energy
functional F : P(X) — R such that F(P;) = D(P¢|Q).
Recall Df(P|Q) = supger Eplg] — Eq[f*(g)]
In this case, the first variation of F evaluated at P4, aP exists, and it is
simply calculated as g; = argmaxgcr{Ep,[g] — Eq[f*(g)]}
Consider the Cauchy problem given Py,

OP; oF
P
v = div( tVaPt) (8)
Note V = Vgp and so the flow of the measure P; will flow in direction

of decreasing F.
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Mass transportation problem

Mass transportation problem

Find a path {P;}+>0 starting from Py that converges to Q while
decreasing the energy functional F(P;) i.e. ‘fj—f(Pt) <0.

The continuity equation (8) differs corresponding to the f divergence
formula. There are several well-known pairs of f and the equations.
Example KL divergence f(x) = x log x ; Fokker-Planck equation

9P = —div(P;V (log Q)) + AP,

Theorem (P. Birmpa (2022))

For f = KL and «, found certain conditions on the measures Py and @ so
that Py — Q in the f divergence within a exponential/polynomial
convergence rate.
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Particle descent algorithm

Discretize the problem
@ with respect to time t with Euler scheme P, = P,

e by the empirical measure P} = % Z,N:1 d,; obtained from N samples
XI o~ Poi=1,---,N.

Particle descent algorithm (P. Birmpa, 3 et.al, 2022)

For each time step t, = nAt, move N particles x,’;H, i=1--- N by

Xpi1 = xh — AtVg;. (9)

Note gy, is constructed from a Neural network with ReLU activation
function so that

@ The optimizer g, maximizes the form,
@ exact calculation for gradients of g, is available,

@ can restrict the function space Lipé by spectral normalization.
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Particle descent algorithm

Algorithm 1: (f,I')-gradient flow particle descent algorithm

Result: {P{)}V,
(PN, ~ Po, {QUIN, ~ Q {WIR,, L, T Itwr, Ire;

g(x) = NN (x, {W'}2 ) where W' is random and ||W'||y = L*/P for
each /;

forn=0to T —1do
g = argmaxyy |\ wi||,=L1/0 rypr {Ep,[gn] — Eqlf*(gn)]}:
Obtain Vg, by AD;
P =P —IrpVgyi=1,-- N

end
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Example: (KL, Lip)-particle descent algorithm

Meaning: For each time step t,, one finds a function g} € Lipé where

D, (Ps|Q) = Ep,[g;] — Eq[f*(g)] and moves the particles toward the
direction that minimizes the KL divergence < maximizes the likelihood.

Learning gaussian

KL flow has an equilibrium measure Q = %ev and the convergence rate is

exponential with its convergence rate —2t/oq for V = —|X|? i.e. Q is
gaussian with standard deviation 0. Observed for (f, Lip}) ~flow.
=0 * T=166 1=333 T=500 10t — sigma_0=0.25

xpl(-0.0804)x+(0.38)]

o — sigma_0=0.5

0- -+ expl(-0.0646)x+(0.59)]

— sigma_0=1.0
expl(-0.0424)x+(0.39)]

sigma ¢
0.
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Comparison with other methods 1: GAN

Generative adversarial network is another ML algorithm for generating
samples from a learned distribution.
A corresponding (f,)-GAN and (f,I')-particle descent algorithm

@ shares the discriminator of the distribution, while

o the PDA generates samples more efficiently from the gradient flow.

Mixture of 4 gaussians
(KL, Lipf;) PDA takes 3 times less updates on the distribution compared to
(KL, Lipt) GAN.
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Comparison with other methods 2: DeepFRAME - MCMC

DeepFRAME is an image model implemented by neural networks whose
algorithm is induced by MCMC. DeepFRAME

@ minimizes f = KL, i.e. maximizing the likelihood

@ learns KL flow equilibrium measure @ = Ze from P, = %ev" where
V), is written as V,(X; w) = —F,(X; w) + ”X! and F, is
parametrized by a deep neural network.

o X, is updated by Langevin monte carlo

2
X1 = Xp + %VV(X, w) + €Z, (10)

where Z, ~ N(0,72), which solves the Fokker-Planck equation for KL
flow.

@ Weight update follows by the stochastic gradient descent from
training samples and negative samples of P,.
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Example problem: Image generation from MNIST data

(KL, Lip*) PDA, 200 iterations, Initial distribution Py ~ N(0,0.52).
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