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Motivation

We’ve seen various Monte Carlo methods for data sampling.

Q: Can we sample from a distribution where its closed formula is
unknown, but we have a set of samples from them?

A: Yes, by learning a distribution with an aid of machine learning!
Formulate the problem as mass transport problem.

Note what we want is a (posterior) distribution Q = P(X |Y ) and its
samples x i ∼ Q, not a conditional mean E[X |Y ].

Q: What measures how far a distribution is from the other?

A: Divergence D(P|Q) given two probability measures P,Q
D : P(Ω)× P(Ω) → [0,∞] is said to have the divergence property if
D(P,Q) = 0 iff P = Q.
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Example: KL divergence
DKL(P|Q) = EP

[
− log

(
dP
dQ

)]
=

∫
Ω− log

(
dP
dQ

)
dP = EQ

[
dP
dQ log

(
dP
dQ

)]
P: proposed measure, Q: target measure
Note By nonnegativity, DKL(P|Q) diverges unless P ≪ Q.

MIN KL divergence ⇔ MAX likelihood Ln(θ) =
∏n

i=1 fθ(xi)

Log likelihood ln(θ) = log Ln(θ) =
∑n

i=1 log fθ(Xi ) and θ
∗ = MLE .

max
θ

1

n
log ln(θ) = max

θ

1

n

n∑
i=1

log fθ(Xi ) (1)

= max
θ

1

n

n∑
i=1

log fθ(Xi )− log fθ∗(Xi ) (2)

= min
θ

1

n

n∑
i=1

log
fθ∗(Xi )

fθ(Xi )
(3)

By LLN, limn→∞− 1
n

∑n
i=1 log

fθ(Xi )
fθ∗ (Xi )

= D(Pθ|Pθ∗).
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f divergence

Variational inference gives general formulation of divergences for a class of
functions f .

Df (P|Q) = sup
g∈Mb(Ω)

EP [g ]− EQ [f
∗(g)] = EQ [f (dP/dQ)] (4)

where f ∗(x) = supx∈R {yx − f (x)} is Legendre transform of f .
General requirements for the functions f :

f is convex and lower-semicontinuous

f (0) = 1

Note 1 f divergence should be P ≪ Q for the last equality of (4).
Note 2 EP [g ]− EQ [f

∗(g)] is strictly concave in g which guarantees a
unique optimizer g∗.
Example f (x) = x log x characterizes the KL divergence.
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Integral probability metric

Integral probability metric on a function space Γ

W Γ(P,Q) = sup
g∈Γ

EP [g ]− EQ [g ]. (5)

Note 1 EP [g ]− EQ [g ] is linear in g .
Note 2 It can compare not absolutely continuous distributions.
Example Γ = Lip1b characterizes the Wasserstein metric.
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(f , Γ)-Divergences

DΓ
f (P|Q) = sup

g∈Γ
EP [g ]− ΛQ

f [g ] (6)

where ΛQ
f [g ] = infν∈R{ν + EQ [f

∗(g − ν)]}.

Theorem (J. Birrell (2022))

DΓ
f (P|Q) has the divergence property if
1 There exists a nonempty set Ψ ⊂ Γ with:

1 Ψ is P(Ω)-determining.
2 ∀ψ ∈ Ψ there exists c0 ∈ R, ϵ0 > 0 such that c0 + ϵψ ∈ Γ, ∀|ϵ| < ϵ0.

2 f is strictly convex on a neighborhood of 1.

3 f ∗ is finite and C 1 on a neighborhood of right derivative f ′+ at 1.

(f , Γ)-divergence defined as above interpolates f -divergence and Γ-IPM.
Note For Γ closed under shift g → g − ν, ν ∈ R,
DΓ
f (P|Q) = supg∈Γ EP [g ]− EQ [f

∗(g)].
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Gradient flow on the space of probability measures

A gradient flow governed by the continuity equation

∂ν

∂t
+ div(νV ) = 0 (7)

where V is a vector field.
Let Pt ,Q ∈ P(X ). Fix the target measure Q, and consider the free energy
functional F : P(X ) → R such that F(Pt) = D(Pt |Q).
Recall DΓ

f (P|Q) = supg∈Γ EP [g ]− EQ [f
∗(g)]

In this case, the first variation of F evaluated at Pt ,
∂F
∂Pt

exists, and it is
simply calculated as g∗

t = argmaxg∈Γ{EPt [g ]− EQ [f
∗(g)]}.

Consider the Cauchy problem given P0,

∂Pt

∂t
= div(Pt∇

∂F
∂Pt

). (8)

Note V = −∇ ∂F
∂Pt

and so the flow of the measure Pt will flow in direction
of decreasing F .
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Mass transportation problem

Mass transportation problem

Find a path {Pt}t≥0 starting from P0 that converges to Q while
decreasing the energy functional F(Pt) i.e.

dF
dt (Pt) ≤ 0.

The continuity equation (8) differs corresponding to the f divergence
formula. There are several well-known pairs of f and the equations.
Example KL divergence f (x) = x log x ; Fokker-Planck equation
∂Pt
∂t = −div(Pt∇ (logQ)) + ∆Pt

Theorem (P. Birmpa (2022))

For f = KL and α, found certain conditions on the measures P0 and Q so
that Pt → Q in the f divergence within a exponential/polynomial
convergence rate.
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Particle descent algorithm

Discretize the problem

with respect to time t with Euler scheme Pn = Ptn

by the empirical measure PN
n = 1

N

∑N
i=1 δx in obtained from N samples

x in ∼ Pn, i = 1, · · · ,N.

Particle descent algorithm (P. Birmpa, 3 et.al, 2022)

For each time step tn = n∆t, move N particles x in+1, i = 1, · · · ,N by

x in+1 = x in −∆t∇g∗
n . (9)

Note gn is constructed from a Neural network with ReLU activation
function so that

The optimizer g∗
n maximizes the form,

exact calculation for gradients of g∗
n is available,

can restrict the function space LipLb by spectral normalization.
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Particle descent algorithm

Algorithm 1: (f , Γ)-gradient flow particle descent algorithm

Result: {P(i)
n }Ni=1

1 {P(i)
0 }Ni=1 ∼ P0, {Q(i)}Ni=1 ∼ Q, {W l}Dl=1, L, T , lrNN , lrP ;

2 g(x) = NN (x , {W l}Dl=1) where W l is random and ∥W l∥2 = L1/D for
each l ;

3 for n = 0 to T − 1 do
4 g∗

n = argmaxW ,∥W l∥2=L1/D ,lrNN
{EPn [gn]− EQ [f

∗(gn)]};
5 Obtain ∇g∗

n by AD;

6 P
(i)
n+1 = P

(i)
n − lrP∇g∗

n , i = 1, · · · ,N
7 end

Hyemin Gu (UMass) Sampling through Particle Descent Algorithm induced by (f , Γ)-gradient flowMay 5, 2022 10 / 14



Example: (KL, Lip)-particle descent algorithm

Meaning: For each time step tn, one finds a function g∗
n ∈ LipLb where

DΓ
KL(Pn|Q) = EPn [g

∗
n ]− EQ [f

∗(g∗
n )] and moves the particles toward the

direction that minimizes the KL divergence ⇔ maximizes the likelihood.

Learning gaussian

KL flow has an equilibrium measure Q = 1
Z e

V and the convergence rate is
exponential with its convergence rate −2t/σQ for V = −|X |2 i.e. Q is
gaussian with standard deviation σQ . Observed for (f , Lip1b) -flow.
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Comparison with other methods 1: GAN

Generative adversarial network is another ML algorithm for generating
samples from a learned distribution.
A corresponding (f , Γ)-GAN and (f , Γ)-particle descent algorithm

shares the discriminator of the distribution, while

the PDA generates samples more efficiently from the gradient flow.

Mixture of 4 gaussians

(KL, LipLb) PDA takes 3 times less updates on the distribution compared to
(KL, LipLb) GAN.
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Comparison with other methods 2: DeepFRAME - MCMC

DeepFRAME is an image model implemented by neural networks whose
algorithm is induced by MCMC. DeepFRAME

minimizes f = KL, i.e. maximizing the likelihood

learns KL flow equilibrium measure Q = 1
Z e

V from Pn = 1
Z e

Vn where

Vn is written as Vn(X ;w) = −Fn(X ;w) + ∥X∥2
2σ2 and Fn is

parametrized by a deep neural network.

Xn is updated by Langevin monte carlo

Xn+1 = Xn +
ϵ2

2
∇V (X ,w) + ϵZn (10)

where Zn ∼ N(0, τ2), which solves the Fokker-Planck equation for KL
flow.

Weight update follows by the stochastic gradient descent from
training samples and negative samples of Pn.
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Example problem: Image generation from MNIST data

(KL, Lip1) PDA, 200 iterations, Initial distribution P0 ∼ N(0, 0.52).
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