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Abstract

This project introduces an ongoing research to generate samples from a data set where the
distribution is unknown. This project keeps focus on mass transportation approach to handle the
problem. First, preliminaries on mass transportation problem and gradient flows on probability
measures will be briefly introduced. Then, particle descent algorithm which is equipped with a
flexible measure of distance will be introduced. The experiments on the low dimensional examples
elaborate the dependency of this measure of distance on the target probability distribution. Strengths
of this work comes from the flexible choice of the measure of distance and an interpolated behavior
between f -divergences and Γ-intergral probability metrics. Also, the efficiency of this algorithm will
be seen by comparing the convergence of a different algorithm, generative adversarial network. Then,
a different approach fueled by Markov chain monte carlo will be briefly discussed in application of
sample generation in a high dimensional data such as image data.
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1 Introduction

Generating samples from a given data set with an unknown distribution can be dealt with generative
models in machine learning field. Generative adversarial network models take a majority in this field.
GANs are composed of discriminator and generator models, where the former discriminates if a sample
belongs to the given distribution and the latter proposes an artificial sample which mimics a real sample
from the given distribution and challenges to deceive the discriminator so that the discriminator concludes
the artificial sample as a real sample. Huge number of data and high computing power enables gan models
to be successful, but given restricted resources, gan models are likely to fail ending up with alternating
intermediate states which are far from the equilibrium state.

On the other hand, there have been previous studies ([1],[4]) which tackle this problem by transporting
mass from one distribution to another. Studies of these families define gradient flows on probability
measures, which are induced by their own metrics. The gradient flows govern the movements of particles
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in order to transport these particles to the target probability measure. But, several examples show that
each gradient flow does not work universally and there is a dependency between the initial and/or target
distributions, and the choice of metric. (f,Γ)-divergence gives a general metric on probability measures
where the pairs of a f -divergence and an integral probability metric interpolates the behavior of each
of them. As a consequence, the gradient flow is more likely to converge to a given target probability
measure within a proper choice of two different metrics and their interpolation parameters.

In practice, we consider samples from distributions as particles from the empirical distributions, and
move these particles through a numerical scheme which discretizes in time and probability measures.
The proposed particle descent algorithm can be implemented in various ways. But, two points make
our method applicable to various divergences as well as computationally tractable. One is the use of
variational expression for the (f,Γ)- divergence, which reduces the calculation of first variation of energy
functional for the gradient flow simple and universal. The other is the neural network implementation
which relieves computational burden of the optimization and the gradient calculation.

The choice of divergence is highly dependent to the characteristic of input and target distribution.
This paper exhibits a low dimensional example. It indicates we require an exploration of various diver-
gences depending on given data.

The particle descent algorithm is expected to be promising for high dimensional data such as image
data. For the high dimensional image generation context, particle descent algorithm will be compared
with other methods. It would give a future direction for the particle descent algorithm.

2 Preliminaries

2.1 (f,Γ)-Divergences

How far a probability measure P is from another probability measure Q can be measured with divergence
D(P |Q). A function D : P(Ω) × P(Ω) → [0,∞] is said to have the divergence property if D(P |Q) = 0
iff P = Q. Divergence is not necessarily symmetric, and this paper uses the notations: P as a proposed
measure, and Q as a target measure. Despite the asymmetry, it can be used as a distance between two
probability measures.

Kullback Leibler divergence DKL(P |Q), or the relative entropy of P with respect to Q is a con-

crete example. KL divergence is defined as: DKL(P |Q) = EP

[
− log

(
dP
dQ

)]
=

∫
Ω
− log

(
dP
dQ

)
dP =

EQ

[
dP
dQ log

(
dP
dQ

)]
. We can observe that DKL(P |Q) blows up unless P is absolutely continuous with

respect to Q, i.e. P ≪ Q. The requirement on the absolute continuity might be an obstacle for real
world problems.

In a statistical view, the minimization of the KL divergence has a close relationship between the
maximization of the likelihood Ln(θ) =

∏n
i=1 fθ(xi). Let us have the log likelihood ln(θ) = logLn(θ) =∑n

i=1 log fθ(Xi) and θ
∗ =MLE.

argmaxθ
1

n
log ln(θ) = argmaxθ

1

n

n∑
i=1

log fθ(Xi) (1)

= argmaxθ
1

n

n∑
i=1

log fθ(Xi)− log fθ∗(Xi) (2)

= argminθ
1

n

n∑
i=1

log
fθ∗(Xi)

fθ(Xi)
(3)

= argminθ −
1

n

n∑
i=1

log
fθ(Xi)

fθ∗(Xi)
(4)

By the law of large numbers, limn→∞ − 1
n

∑n
i=1 log

fθ∗ (Xi)
fθ(Xi)

= D(Pθ|Pθ∗).

In general, f divergence is defined as

Df (P |Q) = EQ[f(dP/dQ)] (5)

for a class of functions f . We can observe that f divergence should be P ≪ Q from (5). Also, for the
KL divergence, f(x) = x log(x).
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On the other hand, variational inference defines f divergence using the duality

Df (P |Q) = sup
g∈Mb(Ω)

EP [g]− EQ[f
∗(g)] (6)

where f∗(x) = supx∈R {yx− f(x)} is Legendre transform of f . Here comes the general requirements for
the function f :

• f is convex and lower-semicontinuous so that f∗∗ = f .

• f(0) = 1.

From the formulation 6, we can observe that EP [g]−EQ[f
∗(g)] is strictly concave in g which guarantees

a unique optimizer g∗.
We noticed that the restriction of P ≪ Q makes f divergences hard to use in the real world problem.

Instead, in the machine learning discipline, integral probability metric is preferred to the f divergence.
Integral probability metric on a function space Γ is defined as

WΓ(P,Q) = sup
g∈Γ

EP [g]− EQ[g]. (7)

An example is that Γ = Lip1b characterizes the Wasserstein metric. We can observe that EP [g] − EQ[g]
is linear in g, so that in the optimization sense, it is harder to optimize the quantity as well as the
optimizer g∗ may not be uniquely exist. Therefore, to compensate the weakness of each other and obtain
an improved divergence with richer properties, we combine them.

(f,Γ)-Divergences is defined as

DΓ
f (P |Q) = sup

g∈Γ
EP [g]− ΛQ

f [g] (8)

where ΛQ
f [g] = infν∈R{ν + EQ[f

∗(g − ν)]}.

Theorem 1 (J. Birrell (2022)[3]). DΓ
f (P |Q) has the divergence property if

1. There exists a nonempty set Ψ ⊂ Γ with:

(a) Ψ is P(Ω)-determining.

(b) ∀ψ ∈ Ψ there exists c0 ∈ R, ϵ0 > 0 such that c0 + ϵψ ∈ Γ, ∀|ϵ| < ϵ0.

2. f is strictly convex on a neighborhood of 1.

3. f∗ is finite and C1 on a neighborhood of right derivative f ′+ at 1.

(f,Γ)-divergence defined as above is known to interpolate f -divergence and Γ-IPM. Furthermore, For
a choice of the function space Γ to be closed under shift g → g − ν, ν ∈ R, DΓ

f (P |Q) can be written in
the form

DΓ
f (P |Q) = sup

g∈Γ
EP [g]− EQ[f

∗(g)]. (9)

[3] Hence, we use (f,Γ)-divergence as our metric.

2.2 Gradient flows and mass transportation problem

Using the optimal transport theory [8], gradient flows defined on a space of probability measures derive
mass transportation problem. Consider a gradient flow governed by the continuity equation

∂ν

∂t
+ div(νV ) = 0 (10)

where V is a vector field.
Let Pt, Q ∈ P(X) where the target Q is fixed and Pt varies and is parametrized by time t. Given

Q, the inner- and inter-actions of two probability measures P and Q can be formulated as a free energy
functional F : P(X) → R. Here, we choose F(Pt) = D(Pt|Q), which means we consider the inner- and
inter-actions of P and Q with respect to a chosen divergence.
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If the first variation ∂F
∂Pt

of F with respect to Pt exists, it is unique and we can consider the Cauchy
problem given initial measure P0,

∂Pt

∂t
= div(Pt∇

∂F
∂Pt

). (11)

Here, the vector field is chosen as V = −∇ ∂F
∂Pt

and so the gradient flow of the measure Pt is expected to
flow in a direction of decreasing F .

In accordance with the problem, mass transportation problem can be stated as: Find a path {Pt}t≥0

starting from P0 that converges to Q while decreasing the energy functional F(Pt) i.e.
dF
dt (Pt) ≤ 0. Since

the continuity equation 11 depends on F , it differs corresponding to the f divergence formula. There are
several well-known pairs of f and the equations. One example is the correspondence of KL divergence
f(x) = x log x and Fokker-Planck equation ∂Pt

∂t = −div(Pt∇ (logQ)) + ∆Pt.

Theorem 2 (P. Birmpa (2022)). For f = KL and α, found certain conditions on the measures P0 = P
and Q so that Pt → Q in the f divergence within a exponential/polynomial convergence rate.

3 Particle descent algorithm

3.1 Algorithm

We move on to numerical scheme to handle the mass transport problem. First, we consider samples
from distributions xin ∼ Pn, i = 1, · · · , N and yin ∼ Pn, i = 1, · · · , N as particles from the empirical

distributions PN
n = 1

N

∑N
i=1 δxi

n
and QN

n = 1
N

∑N
i=1 δyi

n
which discretizes the true distributions P and

Q.
The movement of these particles is governed by a gradient flow, and hence, we discretize the continuity

equation 11 over time. To be specific, we use the Euler scheme and denote Pn = Ptn . For each time step
tn = n∆t, particle descent algorithm (P. Birmpa, 3 et.al, 2022) updates theN particles xin+1, i = 1, · · · , N
over time by xin+1 = xin −∆t∇ ∂F

∂Pt
.

Since we use the variational inference 6, the first variation of F evaluated at Pt,
∂F
∂Pt

exists, and can
be written universally as g∗t = argmaxg∈Γ{EPt [g]− EQ[f

∗(g)]}. Hence, we propose the particle descent
algorithm which updates the particles from the (f,Γ)-divergence gradient flow as

xin+1 = xin −∆t∇g∗n. (12)

For the implementation of the particle descent algorithm, we use neural networks NN with ReLU
activation functions in order to approximate the function gn ∈ Γ. Functions obtained by neural networks
can be optimized so that we get the DΓ

f (P |Q) at the optimizer g∗n in 9. Also, the algorithm requires
∇g∗n which is a big deal using traditional numerical differentiation methods. But, ∇g∗n implemented by
a neural network can be calculated exactly using the neural network weights {W l}Dl=1. One more issue
left is to restrict the function space Γ for g∗n. In the project, we focused on Γ = LipLb for the Wasserstein
metric. Therefore, we want to impose the Lipshitz constraint ∥∇g∥ < L for the differentiable function g.
The neural network with ReLU activation function enables this in a effective and simple way, spectral
normalization [7].

The algorithm is summarized as below:

Algorithm 1 (f,Γ)-gradient flow particle descent algorithm

Result: {P (i)
n }Ni=1

1 {P (i)
0 }Ni=1 ∼ P0, {Q(i)}Ni=1 ∼ Q, {W l}Dl=1, L, T , lrNN , lrP

2 g(x) = NN (x, {W l}Dl=1) where W
l is random and ∥W l∥2 = L1/D for each l

3 for n = 0 to T − 1 do
4 g∗n = argmaxW,∥W l∥2=L1/D,lrNN {EPn [gn]− EQ[f

∗(gn)]}
5 Obtain ∇g∗n by AD

6 P
(i)
n+1 = P

(i)
n − lrP∇g∗n, i = 1, · · · , N

7 end
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3.2 Example

One example of our proposed algorithm is (KL,Lip)-particle descent algorithm. The implication of this
example is that, for each time step tn, one finds a function g∗n ∈ LipLb where DΓ

KL(Pn|Q) = EPn
[g∗n] −

EQ[f
∗(g∗n)] and moves the particles toward the direction that minimizes the KL divergence ⇔ maximizes

the likelihood.
Learning gaussian. KL flow has an equilibrium measure Q = 1

Z e
V and the convergence rate is

exponential with its convergence rate −2t/σQ for V = −|X|2 i.e. Q is gaussian with standard deviation
σQ [6]. This behavior is also observed for the (f, Lip1b) -flow. In the paper to be submitted, V = −|X|β

Figure 1: Learning gaussian with (KL,Lip)-particle descent algorithm

for 0 < β < 2 and β > 2 are discussed with the experimental result.

4 Comparison with other methods

4.1 Generative adversarial network

Generative adversarial network is another ML algorithm for generating samples from a learned distribu-
tion. A corresponding (f,Γ)-GAN and (f,Γ)-particle descent algorithm shares the discriminator of the
distribution, while the PDA generates samples more efficiently from the gradient flow. It is shown from
the example below.

Mixture of 4 gaussians. As the distance among the 4 wells gets larger, it is observed that (f,Γ)-
GANs or other gradient flow algorithms struggled to converge to the target in a reasonable time. In this
figure, d = 4 is chosen to compare how fast the (KL,LipLb ) PDA is compared to the corresponding GAN.

Figure 2: Mixture of gaussians. (KL,LipLb ) PDA takes 3 times less updates on the distribution compared
to (KL,LipLb ) GAN.

GANs inherently learns a map so that a pre-trained model can be evaluated instantly. However, PDA
moves particles and and each evaluation consumes time.

4.2 DeepFrame: inspired by MCMC

DeepFRAME ([5], [9]) is an image model implemented by neural networks whose algorithm is induced
by MCMC. It minimizes f = KL, i.e. maximizes the likelihood and learns KL flow equilibrium measure
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Q = 1
Z e

V from Pn = 1
Z e

Vn where Vn is written as Vn(X;w) = −Fn(X;w)+ ∥X∥2

2σ2 and Fn is parametrized
by a deep neural network. Then, Xn is updated by Langevin monte carlo [2]

Xn+1 = Xn +
ϵ2

2
∇V (X,w) + ϵZn (13)

where Zn ∼ N(0, τ2), which solves the Pokker-Planck equation for KL flow. Weight update follows by
the stochastic gradient descent from training samples and negative samples of Pn.

By restricting that the initial and the intermediate proposal measure {Pn} to have the form 1
Z e

V ,
it is totally governed by the KL flow and a can adopt a relatively fast MCMC method called Langevin
monte carlo. Restriction of the inputs yields a faster convergence especially for the high dimensional
image generation problem.
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